Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Mk cx ko chắc nx nha !
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)
\(=3-\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)\)(mk không biết cách viết nên ns nhé, tổng trong ngoặc { m, là
cái Tổng trong ngoặc dưới tổng có một dấu ngoặc nhọn, dưới dấu ngặc nhọn có M}
Áp dụng BĐT Cauchy-Schwarz:
\(M=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{4\left(a+b+c\right)^2}{\left(a+b\right)\left(a+b+1\right)\left(b+c\right)\left(b+c+1\right)\left(c+a\right)\left(c+a+1\right)}\)
\(=\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(a+b+c\right)}\ge\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(ab+bc+ca\right)}\)
\(=2\)
(Do \(a+b+c\le ab+bc+ca\))
Vậy \(M\ge2\)
\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\le1\)(Đpcm)
Dấu ''='' xảy ra khi a=b=c=1
Chép bài à bn tại sao \(A=\frac{1}{a+b+1}\) thế 2 ở bên kia đ?
Hơn nữa bất đẳng thức bn sai bét rồi người ta bảo bất đẳng thức bên kia mà sao bạn cho tổng luôn
3- lấy đâu ra kết quả phải là \(2^2\)chứ
Nếu ghi sai đề bài là bn sai cả bài k chắc đ :)
Ngoài ra các tổng bên ngoặc k có 4 hay 2 gì hết sai hết r nhé
Do \(ab+bc+ca\le1\) nên:
\(\frac{1}{a^2+1}\le\frac{1}{a^2+ab+bc+ca}=\frac{1}{\left(a+b\right)\left(a+c\right)}.\)
Chứng minh tương tự :\(\frac{1}{b^2+1}\le\frac{1}{\left(a+b\right)\left(b+c\right)};\frac{1}{c^2+1}\le\frac{1}{\left(a+c\right)\left(b+c\right)}.\)
Suy ra \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(1)
Mặt khác áp dụng bất đẳng thức AM-GM ta có:
\(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\ge6\sqrt[6]{\left(abc\right)^6}=6abc\)
\(\Leftrightarrow9\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+18abc\ge8\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+24abc\)\(\Leftrightarrow9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right).\)(2)
Từ (1) và (2) suy ra:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\)(3)
Thật vậy ta có; \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ca}=9abc\)(BĐT AM-GM)
Lại có:\(\sqrt{3}\left(ab+bc+ca\right)\ge\sqrt{3}\sqrt{ab+bc+ca}.\left(ab+bc+ca\right)\)(Do :
\(ab+bc+ca\le1\Rightarrow1\ge\sqrt{ab+bc+ca}.\))
\(\ge3.\sqrt{3\sqrt[3]{a^2b^2c^2}}.3.\sqrt[3]{a^2b^2c^2}=9abc\)(BĐT AM-GM)
Vậy \(\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge9abc+9abc\)
\(\Rightarrow\left(a+b+c+\sqrt{3}\right)\left(ab+bc+ca\right)\ge18abc\)
\(\Rightarrow a+b+c+\sqrt{3}\ge\frac{18}{ab+bc+ca}\)(4)
Từ (3) và (4) ta có:
\(a+b+c+\sqrt{3}\ge8abc.\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
Chứng minh BĐT quen thuộc \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\) Kết hợp với giả thiết ta có: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{a^2+ab+bc+ca}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ab+bc+ca}\)
\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+a\right)\left(b+c\right)}+\frac{1}{\left(c+a\right)\left(c+b\right)}=\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\) Như vậy cần chứng minh
\(a+b+c+\sqrt{3}\ge8abc\cdot\frac{9}{4\left(ab+bc+ca\right)}=\frac{18\left(a+b+c\right)}{ab+bc+ca}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge18abc\)
Ta đã có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) nên cần chứng minh được
\(\sqrt{3}\left(ab+bc+ca\right)\ge9abc\Leftrightarrow ab+bc+ca\ge3\sqrt{3}abc\)
Theo BĐT AM-GM ta đi chứng minh một kết quả chặt hơn là:
\(3\sqrt[2]{a^2b^2c^2}\ge3\sqrt{3}abc\Leftrightarrow abc\le\frac{1}{3\sqrt{3}}\)
Và đây là điều luôn đúng vì \(abc=\sqrt{ab\cdot bc\cdot ca}\le\sqrt{\left(\frac{ab+bc+ca}{3}\right)^3}\le\sqrt{\frac{1}{27}}=\frac{1}{3\sqrt{3}}\)
Ta được đpcm. Dấu \("="\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge a+b+c+3-\frac{a+b+c+ab+bc+ac}{2}\)
\(\ge a+b+c+3-\frac{a+b+c+\frac{\left(a+b+c\right)^2}{3}}{2}\)
\(\ge3+3-\frac{3+\frac{3^2}{3}}{2}=3\)
\("="\Leftrightarrow a=b=c=1\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
@Nguyễn Việt Lâm
@Akai Haruma