Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3+y^{ 3}=\left(x+y\right)\left(x^2-xy+y^2\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy,\forall x,y\ge0\)
Áp dụng:
\(\sum_{cyc}\dfrac{1}{a^3+b^3+abc}\le\sum_{cyc}\dfrac{1}{\left(a+b\right)ab+abc}=\sum_{cyc}\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)
\("="\Leftrightarrow a=b=c\)
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy\)( \(\forall x,y\ge0\) )
Áp dụng: \(\sum\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{\left(a+b\right)ab+abc}=\sum\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)
\("="\Leftrightarrow a=b=c\)
ta chứng minh đc \(x^3+y^3\ge xy\left(x+y\right)\)
thay vào + biến đổi ta có đpcm
đẳng thúc xảy ra khi a=b=c
lol!!!
Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)
Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)
Lời giải:
\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)
\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)
\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\)
\(\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)
Áp dụng BĐT AM-GM:
\(\frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}(\frac{b}{a+b}+\frac{c}{a+c})\)
Hoàn toàn tương tự:
\(\frac{1}{\sqrt{b^2+1}}=\sqrt{\frac{ac}{(b+a)(b+c)}}\leq \frac{1}{2}(\frac{a}{b+a}+\frac{c}{b+c})\)
\(\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}(\frac{a}{c+a}+\frac{b}{b+c})\)
Cộng theo vế:
\(\Rightarrow \frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\leq \frac{1}{2}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})=\frac{3}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)
⇒ \(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)
Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)
\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)
⇒ \(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)
Cảm ơn bạn nhiều lắm