K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

SCó :\(A=\) \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\)=\(\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\) ( chia tử mẫu cho \(a^3\) )     =\(\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^3}}\) 
Lại có\(\sqrt{1+\left(\frac{b+c}{a}\right)^3}\)  =\(\sqrt{\left(1+\frac{b+c}{a}\right)\left[1-\frac{b+c}{a}+\left(\frac{b+c}{a}\right)^2\right]}\)( hằng đẳng thức )
                                                  \(\le\)\(\frac{2+\left(\frac{b+c}{a}\right)^2}{2}\)( áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\))
Nên \(\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{2+\left(\frac{b+c}{a}\right)^2}\)\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2b^2+2c^2}\)( vì \(\left(b+c\right)^2\le2b^2+2c^2\)) . TỪ ĐÓ SUY RA :
\(A=\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)
Cmtt có : \(B=\sqrt[]{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)
        
                 \(C=\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)
VẬY \(A+B+C\ge1\)

 

29 tháng 11 2018

Giải hộ tớ với

4 tháng 8 2017

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Lời giải:

Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)

--------------------------

Áp dụng BĐT AM-GM:

\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)

\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)

Lại theo BĐT AM-GM:

\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)

Và:

\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)

\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Dấu "=" xảy ra khi $a=b=c=\frac{1}{4}$

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:
Áp dụng BĐT AM-GM:

\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)

\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)

\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)

\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)

Ta cần CM \(M\geq \frac{4}{3}\)

\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)

Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=2$

10 tháng 3 2018

Xét \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1+x+1-x+x^2}{2}=\frac{x^2+2}{2}\)

      \(\Rightarrow\sqrt{\frac{1}{1+x^3}}\ge\frac{2}{x^2+2}\)

Xét \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(b+c\right)^3}{a^3}}}\)  \(=\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\)

       \(\Rightarrow\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\ge\frac{2}{\frac{\left(b+c\right)^2}{a^2}+2}\) 

         \(=\frac{2a^2}{b^2+c^2+2bc+2a^2}\ge\frac{2a^2}{2b^2+2c^2+2a^2}\) (1)  (cái này bạn tự quy đồng sau đó áp dụng cosi cho 2bc)

Tương tự  \(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{2b^2}{2a^2+2b^2+2c^2}\)  (2)     \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{2c^2}{2a^2+2b^2+2c^2}\)  (3)

 Cộng các vế của (1),(2) và (3) ta có đpcm

                                                                                   

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

2 tháng 2 2018

Ta dự đoán :\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)

Thật vậy ta sẽ chứng minh nó:

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge a\left(a^3+\left(b+c\right)^3\right).\)

\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\left(#\right)\)

Ta có:\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{1}{4}\left(b+c\right)^4\ge a\left(b+c\right)^3\)

Từ đó , ta có bất đẳng thức \(\left(#\right).\)

Tương tự:

\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}.\)

Cộng bất đẳng thức trên lại ta có điểu phải chứng minh.

Dấu bằng xảy ra khi \(a=b=c\)

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)