Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)
Khi đó:
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}\)
\(=\frac{a\left(a+c\right)+2ac}{2a\left(a+c\right)-2ac}+\frac{c\left(a+c\right)+2ac}{2c\left(a+c\right)-2ac}\)
\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=\frac{a^2}{2a^2}+\frac{3ac}{2a^2}+\frac{c^2}{2c^2}+\frac{3ac}{2c^2}\)
\(=\frac{1}{2}+\frac{3c}{2a}+\frac{1}{2}+\frac{3a}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\ge1+\frac{3}{2}\cdot2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=1+3=4\) (Cauchy)
Dấu "=" xảy ra khi: \(a=b=c\)
ta có \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)
thay b vào\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}\)
\(=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+6ac}{2ac}=4\)
tham khảo nhé :)
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)\(\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\)\(\Leftrightarrow b=\frac{2ac}{a+c}\)
Ta có : \(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{a\left(a+3c\right)}{2a^2}=\frac{a+3c}{2a}\)
tương tự : \(\frac{b+c}{2c-b}=\frac{c+3a}{2c}\)
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+3.2ac}{2ac}=\frac{8ac}{2ac}=4\)
\(\frac{a+c}{ac}=\frac{2}{b}\) => \(b=\frac{2ac}{a+c}\) thay vào BĐT cần chứng minh, ta được:
\(\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}\)
\(=\frac{2a^2c^2+3a^3c+3ac^3}{2a^2c^2}\ge4\)
<=> 3a3c-6a2c2+3ac3 ≥ 0
<=> 3ac(a-c)2 ≥ 0 luôn đúng ∀ a,c > 0
Vậy BĐT được chứng minh, đẳng thức xảy ra khi và chỉ khi a=c; b≠0
Áp dụng bđt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Ta có
\(\frac{1}{2a+b+c}\le\frac{1}{4}\left(\frac{1}{2a}+\frac{1}{b+c}\right)=\frac{1}{8a}+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+c}\le\frac{1}{8b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(\frac{1}{a+b+2c}\le\frac{1}{8c}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\sum\frac{1}{2a+b+c}=\sum\frac{1}{a+a+b+c}\le\frac{1}{16}\sum\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow ab+bc+ca=0\)
Chứng minh đẳng thức này mà áp dụng:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Khi đó
\(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
\(=\frac{\left(a^3b^3+b^3c^3+c^3a^3\right)}{abc}=\frac{3a^2b^2c^2}{abc}=3abc\) Do ab+bc+ca=0
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
từ cái đã cho suy ra được \(\frac{2a-b}{ab}=\frac{1}{c}\Rightarrow2a-b=\frac{ab}{c}\)
Chứng minh tương tự =>2c-b=bc/a
Đặt \(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\)
\(=c\left(\frac{1}{a}+\frac{1}{b}\right)+a\left(\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)Cái này tự chứng minh nhé
Dấu = xảy ra khi a=b=c