K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)+ 1 > 0 

\(\Rightarrow\)Đpcm

  b)Xét 3(a+ b+ c2) -(a + b +c)=3a+ 3b+ 3c- a- b- c- 2ab - 2ac - 2bc

                                                  =2a+ 2b+ 2c - 2ab - 2ac - 2bc

                                                  =(a - b)+ (a - c)+ (b - c)2\(\ge\)0 (với mọi a,b,c)

\(\Rightarrow\)Đpcm

2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

         áp dụng cô-sy

\(\Rightarrow\)A\(\ge\)9

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

27 tháng 4 2019

Từ \(1=a+b+c\Rightarrow1=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(bất đẳng thức bunhiacopxki)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)(*)

Ta có  : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)(1)

Dễ thấy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{b}{b}+\frac{c}{a}+\frac{a}{c}\)

\(\ge3+2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{c}{b}\frac{b}{c}}+2\sqrt{\frac{a}{c}\frac{c}{a}}=3+2+2+2=9\)(bất đẳng thức cô si)

\(Hay:\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\left(do:a+b+c=1\right)\)(2)

Từ (1) và (2) suy ra \(9^2\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge27\)(**)

Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)

\(=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}+c^2+2+\frac{1}{c^2}\)

\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)

\(\ge\frac{1}{3}+27+6=33+\frac{1}{3}>33\)(theo (*) và (**) )

NV
12 tháng 6 2019

\(P=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{1}{3}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(P\ge\frac{1}{3}\left(a+b+c+\frac{9}{a+b+c}\right)^2=\frac{1}{3}.10^2=\frac{100}{3}>33\)

19 tháng 4 2019

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

TT : ....

\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{a+c}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\frac{b+c}{4}-\frac{a+c}{4}-\frac{a+b}{4}=\frac{a+b+c}{2}\)( 1 )

Mà a + b + c > 2 \(\Rightarrow\frac{a+b+c}{2}>1\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>1\)

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.