Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM, ta có:
\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\)
\(\ge\dfrac{3\sqrt{a^3b^3c^3}}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{a^2+c^2}{b^2+\dfrac{a^2+c^2}{2}}\)
\(\ge\dfrac{3abc}{2abc}+\dfrac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}+\dfrac{2\left(b^2+c^2\right)}{2a^2+b^2+c^2}+\dfrac{2\left(a^2+c^2\right)}{2b^2+a^2+c^2}\)
\(=\dfrac{3}{2}+2\times\left[\dfrac{a^2+b^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\dfrac{b^2+c^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\dfrac{c^2+a^2}{\left(b^2+c^2\right)+\left(b^2+a^2\right)}\right]\) (1)
Đặt \(\left\{{}\begin{matrix}a^2+b^2=x\\b^2+c^2=y\\c^2+a^2=z\end{matrix}\right.\), ta có:
\(\left(1\right)\Leftrightarrow\dfrac{3}{2}+2\times\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)
\(\ge\dfrac{3}{2}+2\times\dfrac{3}{2}\) (Bất_đẳng_thức_Nesbitt)
\(=\dfrac{9}{2}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c
Ta có: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( BĐT AM )
Áp dụng BĐT Schwarz ta có:
\(P\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\ge\dfrac{3}{2}\)
Dấu " = " khi a = b = c = 1
Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)
Ta có:
\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)
\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)
\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)
\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)
\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)
\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)
Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)
\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)
\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)
\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)
Từ (3) và (4)
\(\Rightarrow VT\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Bài 1:
Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)
\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)
\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)
\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)
\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Cộng theo vế và rút gọn:
\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)
\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$
Lời giải:
Vì $1=a^2+b^2+c^2$ nên:
\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}=\frac{a^2+b^2+c^2}{a^2+b^2}+\frac{a^2+b^2+c^2}{b^2+c^2}+\frac{a^2+b^2+c^2}{c^2+a^2}\)
\(=3+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\)
\(\leq 3+\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\) (theo BĐT AM-GM)
\(=3+\frac{a^3+b^3+c^3}{2abc}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)