K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016
Áp dụng bdt Cô-si:
\(\frac{a}{b}+ab\ge2a\)
\(\frac{b}{c}+bc\ge2b\)
\(\frac{c}{a}+ac\ge2c\)
Cộng 2 vế của 3  bdt ta được:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+ab+bc+ac\ge2a+2b+2c\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge2a+2b+2c-ab-bc-ac\)
Mặt khác vì a,b,c là các số dương nên hiển nhiên ab+bc+ac>a+b+c
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>a+b+c\)
26 tháng 6 2016

áp dụng cô si ta có 
a³/b + ab ≥ 2a² 
b³/c + bc ≥ 2b² 
c³/a + ac ≥ 2c² 
+ + + 3 cái lại 
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc 
mặt khác ta có 
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé) 

26 tháng 6 2016

Cảm ơn bạn nhé

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

19 tháng 6 2020

CM theo bdt co-si

Áp dụng bdt Co - si cho cặp số dương a2/c và c

Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)

CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)

         \(\frac{c^2}{b}+b\ge2c\)(3)

Từ (1); (2) và (3) cộng vế theo vế, ta có:

\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)

<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)

19 tháng 6 2020

\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra <=> a = b = c

30 tháng 3 2017

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}\)

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}\ge\dfrac{4}{a+b+2c}\)

\(\Rightarrow2\dfrac{1}{a+b}+2\dfrac{1}{b+c}+2\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge2\left(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\right)\left(ĐPCM\right)\)

30 tháng 3 2017

Ta có a,b>0, áp dụng bất đẳng thức Cô - si cho hai số không âm:
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta có : (1/a+1/b)/2>=v(1/a*1/b)
=>1/a + 1/b >= 2*1/v(a*b)
mà v(a*b)<=(a+b)/2
=> 2*1/v(a*b) >= 2*1/((a+b)/2) = 4(a+b)
=>1/a + 1/b >= 4(a+b) (đpcm).
Cmr: 1/(a+b) + 1/(a+c) + 1/(b+c)>=2(1/(2a+b+c) + 1/...
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta cũng áp dụng bất đẳng thức cô si cho hai số không âm:
1/(a+b) + 1/(b+c) >=2*1/(v(a+b)*(a+c))
tương tự với 1/(a+b) + 1/(b+c) >= 2*1/(v(a+b)*(b+c))
tương tự với 1/(a+c) + 1/(b+c) >= 2*1/1/(v(a+c)*(b+c))
=>2(1/(a+b) + 1/(a+c) + 1/(b+c))>=2*[1/(v(a+b)*(a+c))+v(a+b)*(b+... (1)
mà v((a+b)*(a+c))<=(a+b+a+c)/2=(2a+b+c)
=>1v(a+b)*(a+c)>=2(2a+b+c)
tương tự ta có 1v(a+b)*(b+c)>=2(2b+a+c)
=> 1/[v(a+b)*(a+c))+v(a+b)*(b+c))+1/(v(a+b)... >=2[1/(2a+b+c) + 1/(2b+a+c) + 1/(2c+a+b)] (2)
Từ (1) và (2) ta suy ra điều phải chứng minh.

tương tự ta có 1v(a+c)*(b+c)>=2(2c+a+b)

19 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Dấu "=" xảy ra <=> a = b = c

11 tháng 3 2018

Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:

\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\)           (1)

CMTT ta được

\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\)                             (2)

\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\)                             (3)

Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\)                 (*)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:

\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)

Thay vào pt (*) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

k tớ nha !!!