K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

 do in you free time

12 tháng 5 2018

Đặt \(x=\frac{a}{b-c};y=\frac{b}{c-a};z=\frac{c}{a-b}\)

\(\Rightarrow xy+yz+zx=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}=-1\) (Tự CM)  

Ta có: \(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\ge2\) 

=> ĐPCM 

17 tháng 2 2017

..... ko biết đợi đứa khác đê

18 tháng 2 2017

C/m bằng biến đổi tương đương như sau

\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)

P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm

27 tháng 11 2017

đặt \(\hept{\begin{cases}a+b=x\\b+c=y\\c+a=z\end{cases}}\)

cậu tính A theo x,y,x rồi chứng minh 

\(B=\frac{x}{z-y}.\frac{y}{x-z}+\frac{y}{x-z}.\frac{z}{y-x}+\frac{z}{y-x}.\frac{x}{z-y}=-1\)

thì ta có A+2B>=0   -->A>=-2B=2

27 tháng 11 2017

\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)

Subtract 2 from both sides:

\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}-2\ge2-2\)

Refine:

\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}\ge0\)

Simplyfy : \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}:\)     \(\frac{4a^2bc-4a^2c^2-4a^2b^2+2a^2b-2a^2c+4ab^2c+4abc^2+2ac^2-2ab^2-4b^2c^2+2b^2c-2bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}-2\)

Convert element to fraction: \(2=\frac{2}{1}\)

\(=\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a^2\right)}{\left(c-a\right)}-\frac{2}{1}\)

Find LCD for: \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{c-a}-\frac{2}{1}\):

Find the least common denominator 1   (a  - b) (b - c) (c- a) = (a  - b) (b - c) (c- a)(a  - b) (b - c) (c- a)

Sau đó vào đây để xem bài giải tiếp theo nhá! Lười đánh máy tiếp lắm!   Có gì mai mốt sử dụng phần mềm đó giải khỏi phải lên đây hỏi.

Step-by-Step Calculator - Symbolab

25 tháng 3 2016

dùng hằng đúng 

31 tháng 8 2017

Câu hỏi của Bùi Minh Quân - Toán lớp 9 - Học toán với OnlineMath

2 tháng 2 2016

Đặt \(x=\frac{a+b}{a-b};y=\frac{b+c}{b-c};z=\frac{c+a}{c-a}\)

Ta có : \(x+1=\frac{2a}{a-b};y+1=\frac{2b}{b-c};z+1=\frac{2c}{c-a}\) (1)

\(x-1=\frac{2b}{a-b};y-1=\frac{2c}{b-c};z-1=\frac{2a}{c-a}\) (2)

Từ (1) và (2) => \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

<=> \(\left(xy+x+y+1\right)\left(z+1\right)=\left(xy-x-y+1\right)\left(z-1\right)\)

<=> \(xyz+xz+yz+z+xy+x+y+1=xyz-xz-yz+z-xy+x+y-1\)

<=> \(xy+yz+xz=-1\)

TA có \(\left(x+y+z\right)^2\ge0\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+xz\right)=2\)

2 tháng 2 2016

đề bài thiếu rùi CM cái gì đó

30 tháng 9 2017

Nhiều quá làm 1 bài tiêu biểu thôi nhé:

a/ \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}\)

\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}=1\)

30 tháng 9 2017

2 bài còn lại y chang