K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm ta có:
\(a^2+\frac{1}{4}\geq 2\sqrt{a^2.\frac{1}{4}}=|a|\geq a\)

\(b^2+\frac{1}{4}\geq 2\sqrt{b^2.\frac{1}{4}}=|b|\geq b\)

\(c^2+\frac{1}{4}\geq 2\sqrt{c^2.\frac{1}{4}}=|c|\ge c\)

\(d^2+\frac{1}{4}\geq 2\sqrt{d^2.\frac{1}{4}}=|d|\geq d\)

Cộng theo vế và rút gọn:

\(a^2+b^2+c^2+d^2+1\geq a+b+c+d=2\)

\(\Rightarrow a^2+b^2+c^2+d^2\geq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=d=\frac{1}{2}$

30 tháng 9 2017

Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)

\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)

=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)

Dấu "=" xảy ra khi a=b=c=d=1

21 tháng 10 2017

a² + b² + c² + d² + e² ≥ a(b + c + d + e) 

Ta có: a² + b² + c² + d² + e² 

= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) 

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab 

Tương tự ta có: 

. a²/4 + c² ≥ ac 
. a²/4 + d² ≥ ad 
. a²/4 + e² ≥ ae 

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae 

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m 

Dấu " = " xảy ra <=> a/2 = b = c = d = e

29 tháng 12 2017

Áp dụng BĐT Bunhiacopxki , ta có: 

Với a,b,c,d >0

\(\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ca+2bd}\)

Ta cần chứng minh : 

\(\left(a+b+c+d\right)^2\ge2\left(ab+bc+cd+da+2ac+2bd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge2ca+2bd\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)

2 tháng 8 2019

giúp mik vs mấy bn ơi đừng giải theo BĐT nhá

2 tháng 8 2019

Mấy cái này ko gọi là bđt thì gọi là cái gì @@ Chẳng lẽ là "không đẳng thức" :v

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!