K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:

BC^2=AB^2+AC^2=3^2+4^2=5^2

=> BC=5 cm

3 tháng 5 2016

b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC

VÌ tam giác BAM= tam giác CDM=> AB=CD

21 tháng 12 2016

a) Xét t/g MIB và t/g MDC có:

MB = MC (gt)

BMI = CMD ( đối đỉnh)

IM = DM (gt)

Do đó, t/g MIB = t/g MDC (c.g.c) (đpcm)

b) t/g MIB = t/g MDC (câu a)

=> MIB = MDC (2 góc tương ứng)

Mà MIB và MDC là 2 góc ở vị trí so le trong nên BI // DC (1)

Xét t/g IMC và t/g DMB có:

MC = MB (gt)

IMC = DMB ( đối đỉnh)

IM = DM (gt)

Do đó, t/g IMC = t/g DMB (c.g.c)

=> ICM = DBM (2 góc tương ứng)

Mà ICM và DBM là 2 góc ở vị trí so le trong nên IC // BD (2)

(1) và (2) là đpcm

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

10 tháng 12 2020

           Bài làm :

1)

Xét 2 ∆ : ∆NAE và ∆NCM có :

+ NA = NC ( Vì N là trung điểm AC )

+ Góc ANE = Góc CNM ( 2 góc đối đỉnh )

+ MN = NE ( Giả thiết )

=> ∆NAE = ∆NCM ( c.g.c)

2)

∆NAE = ∆NCM ( c.g.c) (Chứng minh trên)

=> Góc NAE = Góc NCM

Mà 2 góc này ở vị trí so le trong

=> AE // MC

=> AE // BC

Cũng từ việc chứng minh được ∆NAE = ∆NCM ( c.g.c) ; ta có :

AE = CM

Mà CM = MB = 1/2BC => AE = BM

3)

Ta có :

+ AE = BM ( Chứng minh trên )

+ AE // BM ( Chứng minh trên )

=> Tứ giác AEBM là hình bình hành vì có 2 cặp cạnh đối song song và bằng nhau

=> Các đường chéo cắt nhau tại trung điểm mối đường

Theo đề bài : K là trung điểm AM => K là trung điểm BE

=> 3 điểm B,K,E thẳng hàng