K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2023

 Do MD//AB và \(AB\perp AD\) nên \(MD\perp AD\) hay \(\widehat{ADM}=90^o\). Hoàn toàn tương tự, ta có \(\widehat{AEM}=90^o\). Mà \(\widehat{DAE}=90^o\) nên tứ giác ADME là hình chữ nhật. Do đó \(DE=AM\). Như vậy, ta quy về tìm vị trí của M trên BC để AM nhỏ nhất. Kẻ đường cao AH của tam giác ABC thì H cố định. Ta thấy AH và AM lần lượt là đường vuông góc và đường xiên kẻ từ A lên BC nên \(AM\ge AH\). Dấu "=" chỉ xảy ra khi \(M\equiv H\) hay M là chân đường vuông góc hạ từ A lên BC. 

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

31 tháng 10 2021

Xét tứ giác AEDF có 

AE//DF

DE//AF

Do đó: AEDF là hình bình hành

mà \(\widehat{DAE}=90^0\)

nên AEDF là hình chữ nhật

21 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Để hình bình hành AIDK là hình thoi.

⇒ AD là đường phân giác của ∠ (IAK)

hay AD là đường phân giác của (BAC)

Ngược lại nếu AD là tia phân giác của  ∠ (BAC)

Ta có tứ giác AIDK là hình bình hành có đường chéo AD là phân giác của góc A nên tứ giác AIDK là hình thoi

Vậy hình bình hành AIDK là hình thoi khi và chỉ khi D là giao điểm tia phân giác của góc A và cạnh BC.

a: Xét tứ giác AKMH có

góc AKM=góc AHM=góc HAK=90 độ

nên AKMH là hình chữ nhật

b: ΔMCE vuông cân tại M

mà MH là đường cao

nên H là trung điểm của CE

Xét tứ giác MCFE có

H là trung điểm chung của MF và CE

ME=MC

gócc CME=90 độ

Do đó: MCFE là hình vuông