Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Xét ΔABD và ΔEBD có :
AB=BE(gt)
B1ˆ=B2ˆ(=12Bˆ)
BD: cạnh chung
⇒ΔABD=ΔEBD(c−g−c)
⇒DA=DE ( cạnh tương ứng )
Vậy DA=DE
b) Vì ΔABD=ΔEBD
⇒ góc A= góc BED
Mà góc A=900⇒ góc BED=900
Vậy góc BED =900
c) VÌ ΔABD=ΔEBD ( cmt)
=> góc ABD = góc EBD( 2 góc tương ứng)
Xét \(\Delta ABIv\text{à}\Delta EBI\)có:
AB = EB
góc ABD = góc EBD
BI cạnh chung
=>\(\Delta ABI=\text{ }\Delta EBI\)
=> góc AIB = góc EIB và IA = IE (1)
Mà góc AIB + góc EIB =180 0
=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)
Từ (1),(2) => BI là đường trung trực của AE
Mà I \(\in\)BD
=> BD là đường trung trực của AE
Vậy BD là đường trung trực của AE
A B C E D
HÌNH KO CHUẨN LẮM
a) Xét \(\Delta ABD-\Delta EBD\) có :
BA = BE
\(\widehat{ABD}=\widehat{EBD}\)( phân giác )
DB là cạnh chung
=> \(\Delta ABD=\Delta EBD\)(C,G,C)
b) theo câu a) 2 tam giác ... = nhau
=> DA = DE ( 2 cạnh tương ứng )
c) theo câu a) 2 tam giác ... = nhau
=> \(\widehat{BAD}=\widehat{BED}=90^o\)( 2 góc tương ứng )
d) xét 2 tam giác \(\Delta EDB-\Delta EDC\)CÓ:
BED = CED ( góc vuông )
DE là cạnh chung
Để 2 tam giác \(\Delta EDB=\Delta EDC\) thì
\(\widehat{EBD}=\widehat{C}\)
MÀ \(\widehat{EBD}=\frac{1}{2}B\)
vậy để 2 tam giác đó = nhau thì góc B phải gấp 2 lần góc C
Em tham khảo câu a, b tại link : Câu hỏi của Ngọc Giang - Toán lớp 7 - Học toán với OnlineMath
Câu c. Gọi H là giao điểm của BD và AC
Xét tam giác ABH và tam giác EBH có: AB = EB ( gt ); ^BAH = ^EBH ; BH chung
=> Tam giác ABH = Tam giác EBH
=> ^AHB = ^EHB mà ^AHB + ^EHB = 180\(^o\)
=> ^AHB = ^EHB = 90\(^o\)
=> BH vuông AE => BD vuông AE
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD