K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
22 tháng 11 2017

A B D C M N H O I E F G K J

a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)

Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)

Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)

Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD

b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.

Trước hết, ta chứng minh GK//MN. 

Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\) 

Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)

Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)

Theo định lý Ta lét đảo, suy ra GK//MN.

Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành

Vậy thì J là trung điểm của EK.

Xét tam giác OGK có EF // GK nên ta có :

\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)

Ta cũng có GK//MN nên :

\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)

2 tháng 12 2017

giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

28 tháng 5 2019

Bạn có hình vẽ ko

22 tháng 3 2021

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

a: Xét (O) có

ΔACB nội tiếp
AB là đường kính

DO đó: ΔCBA vuông tại C

\(BC=\sqrt{\left(2\cdot R\right)^2-R^2}=R\sqrt{3}\)

Xét ΔABC vuông tại C có sin CBA=CA/AB=1/2

nên góc CBA=30 độ

=>góc CAB=60 độ

b: \(CI=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)

=>\(CD=R\sqrt{3}\)

c: Xét ΔEAB vuông tại A có AC là đường cao

nên \(\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{AB^2}\)

=>\(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{4\cdot R^2}\)

22 tháng 5 2018

HÌNH BẠN TỰ VẼ NHA 

a ) 

Xét tứ giác BDCO , co : 

 \(\widehat{B}=90^o\left(gt\right)\)

\(\widehat{C}=90^o\left(gt\right)\)

\(\widehat{B}+\widehat{C}=90^o+90^o=180^o\)

Vay : tứ giác BDCO nội tiếp  ( vì có tổng số đo hai góc đối diện bằng 180)

b ) Xét \(\Delta DCEva\Delta DFC,co:\)

\(\widehat{D}\) là góc chung 

\(\widehat{ECD}=\widehat{EFC}\) ( góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn 1 cung ) 

Do do : \(\Delta DCE~\Delta DFC\left(g-g\right)\)

=> \(\frac{DC}{DE}=\frac{DF}{DC}\)

=> DC= DE . DF 

22 tháng 5 2018

ta có góc DIC=AIF ( đđ )

mà góc AIF = IAB (slt)

gọi H là giao điểm của OD với đường tròn

mà góc IAB = COD ( =1/2 cung CB )( Vì ACB là góc nội tiếp chắn cung CB và COD là góc ở tâm chắn cung CH mà Cung CH= cung BH= cung CB/2)

từ đó suy ra góc CID= COD

suy ra tứ giác CIOD nội tiếp( hai góc bằng nhau cùng chắn cung CD)

suy ra góc OID=OCD=90°

suy ra OI vuông với EF

suy ra I là trung điểm của EF(đpcm)