Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C M N H O I E F G K J
a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)
Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)
Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)
Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD
b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.
Trước hết, ta chứng minh GK//MN.
Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\)
Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)
Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)
Theo định lý Ta lét đảo, suy ra GK//MN.
Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành
Vậy thì J là trung điểm của EK.
Xét tam giác OGK có EF // GK nên ta có :
\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)
Ta cũng có GK//MN nên :
\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)
→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o
EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o
⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)
→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o
Mà ABCDABCD là hình thang cân
→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^
→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn
2. Từ câu 1
→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^
Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân
→EM//AB→EM//AB
3. Ta có:
EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB
→MH=MK→M→MH=MK→M là trung điểm HK
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
DO đó: ΔCBA vuông tại C
\(BC=\sqrt{\left(2\cdot R\right)^2-R^2}=R\sqrt{3}\)
Xét ΔABC vuông tại C có sin CBA=CA/AB=1/2
nên góc CBA=30 độ
=>góc CAB=60 độ
b: \(CI=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
=>\(CD=R\sqrt{3}\)
c: Xét ΔEAB vuông tại A có AC là đường cao
nên \(\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{AB^2}\)
=>\(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{4\cdot R^2}\)
HÌNH BẠN TỰ VẼ NHA
a )
Xét tứ giác BDCO , co :
\(\widehat{B}=90^o\left(gt\right)\)
\(\widehat{C}=90^o\left(gt\right)\)
\(\widehat{B}+\widehat{C}=90^o+90^o=180^o\)
Vay : tứ giác BDCO nội tiếp ( vì có tổng số đo hai góc đối diện bằng 180o )
b ) Xét \(\Delta DCEva\Delta DFC,co:\)
\(\widehat{D}\) là góc chung
\(\widehat{ECD}=\widehat{EFC}\) ( góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn 1 cung )
Do do : \(\Delta DCE~\Delta DFC\left(g-g\right)\)
=> \(\frac{DC}{DE}=\frac{DF}{DC}\)
=> DC2 = DE . DF
ta có góc DIC=AIF ( đđ )
mà góc AIF = IAB (slt)
gọi H là giao điểm của OD với đường tròn
mà góc IAB = COD ( =1/2 cung CB )( Vì ACB là góc nội tiếp chắn cung CB và COD là góc ở tâm chắn cung CH mà Cung CH= cung BH= cung CB/2)
từ đó suy ra góc CID= COD
suy ra tứ giác CIOD nội tiếp( hai góc bằng nhau cùng chắn cung CD)
suy ra góc OID=OCD=90°
suy ra OI vuông với EF
suy ra I là trung điểm của EF(đpcm)