K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
7 tháng 5 2019

+ \(\left\{{}\begin{matrix}S_{ABC}=\frac{1}{2}\cdot AI\cdot BC\\S_{BHC}=\frac{1}{2}\cdot HI\cdot BC\end{matrix}\right.\)

( với \(S_{ABC},S_{BHI}\) lần lượt là diện tích ΔABC, ΔBHI )

\(\Rightarrow\frac{S_{BHI}}{S_{ABC}}=\frac{\frac{1}{2}\cdot HI\cdot BC}{\frac{1}{2}\cdot AI\cdot BC}=\frac{HI}{AI}\)

+ Tương tự ta cm đc :

\(\frac{HD}{BD}=\frac{S_{AHC}}{S_{ABC}}\)

\(\frac{HE}{CE}=\frac{S_{AHB}}{S_{ABC}}\)

Do đó : \(\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}\)

\(=\frac{S_{ABC}}{S_{ABC}}=1\)

7 tháng 5 2019

Làm giúp mk câu b ý 2 ạ

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

3 tháng 5 2016

a, Xét tam giác ADB và tam giác AEC có:

^A chung

^AEC = ^ADB 

\(\Rightarrow\) ADB đồng dạng AEC

b,Xét tam giác HEB và tam giác HDC có:

^EHB = ^DHC

^HEB = ^HDC

\(\Rightarrow\) tam giác HEB đồng dạng tam giác HDC

\(\Rightarrow\) HE.HC = HD.HB