K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
28 tháng 4 2016
Xét tam giác ABE và tam giác ACD có
AB=AC(gt)
AD=AE(gt)
góc A chung
\(\Rightarrow\)tam giác ABE= tam giác ACD(cgc)
\(\Rightarrow\)BE=CD(2 cạnh tương ứng)
13 tháng 2 2016
a.Xét tam giác DBC và tam giác ECB có:
DB=EC (AB=AC và AD=AE)
góc ABC = góc ACB (cân tại A)
BC là cạnh chung
Do đó tam giác DBC = tam giác ECB (c.g.c)
Suy ra BE= CD (ĐPCM)
M A B C D E 1 2 1 1 2 2 1 1
a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
góc A : chung
AD = AE (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b) Ta có: AB = AC (gt) ; AD = AE (gt) => BD = CE
\(\widehat{D1}+\widehat{D2}=180^0\)(kề bù)
\(\widehat{E1}+\widehat{E2}=180^0\)(kề bù)
mà \(\widehat{D2}=\widehat{E2}\) (do t/giác ABE = t/giác ACD)
=> \(\widehat{D1}=\widehat{E1}\)
Xét t/giác BMD và t/giác CME
có : BD = CE (cmt)
\(\widehat{D1}=\widehat{E2}\)(cmt)
\(\widehat{B1}=\widehat{C1}\)(do t/giác ABE = t/giác ACD)
=> t/giác BMD = t/giác CME (g.c.g)
c)Xét t/giác ABM và t/giác ACM
có: AB = AC (gt)
AM : chung
BM = CM (do t/giác BMD = t/giác CME)
=> t/giác ABM = t/giác ACM (c.c.c)
=> \(\widehat{A1}=\widehat{A2}\) (2 góc t/ứng)
=> AM là tia p/giác của góc BAC