Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{ac+c+1}{ac+c+1}=1\)
Vậy M = 1
Thay 2015= abc vào M ta được:
M = \(\frac{abca}{ab+abca+abc}\) + \(\frac{b}{bc+b+abc}\) + \(\frac{c}{ac+c+1}\)
M = \(\frac{abca}{ab\left(1+ac+c\right)}\) + \(\frac{b}{b\left(c+1+ac\right)}\) + \(\frac{c}{ac+c+1}\)
M = \(\frac{ac}{1+ac+c}\) + \(\frac{1}{c+1+ac}\) + \(\frac{c}{ac+c+1}\)
M = \(\frac{1+ac+c}{1+ac+c}\) = 1
Vây M = 1
XONG !
Ta có
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{\left(a+b+c\right)c}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b+c\right)c=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Tự làm nốt
a/ Điều kiện xác định \(\hept{\begin{cases}a^2+a\ne0\\a^2-a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}}\)
b/ \(M=\frac{a^2-1}{2016+2015a^2}\left(\frac{2015a-2016}{a+a^2}+\frac{2016+2015a}{a^2-a}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}.\frac{2\left(2015a^2+2016\right)}{a\left(a+1\right)\left(a-1\right)}\)
\(=\frac{2}{a}=\frac{2}{2016}=\frac{1}{1008}\)
a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)
b.bạn viết đề kiểu j vậy
\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+a}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+a}=\frac{ac+c+1}{ac+c+1}=1\)