Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)
\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)
Cộng vế với vế ta có:
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{1}=bc+ac+ab\Rightarrow a+b+c>bc+ac+ab\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1\)
\(=1-1+a+b+c-ac-bc-ab=a+b+c-\left(ac+bc+ab\right)\)
vì \(a+b+c>bc+ac+ab\)(chứng minh trên)\(\Rightarrow a+b+c-\left(bc+ac+ab\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(\frac{b}{bc+b+1}+\frac{a}{ab+a+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac.b}{ac\left(bc+b+1\right)}+\frac{c.a}{c\left(ab+a+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{1}{c+1+ac}+\frac{ac}{1+ac+c}+\frac{c}{ac+c+1}=1\)
a= b+c=a : b=a+c; c= a=b voi nhung bai nhan chia cung vay
bc+1/c = ca+1/c => bc + 1 = ca + 1 <=> bc = ca <=> b = a
minh chi lam đc 1 cai thoi
Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{bc}\cdot c+c+1}\)
\(=\frac{1}{bc\left(\frac{1}{c}+\frac{1}{bc}+1\right)}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{b\left(\frac{1}{b}+c+1\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=1\)
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
=abc/(ab+a+1)bc+b/(bc+b+1)+bc/(ac+c+1)b
=1/(abcb+abc+bc)+b/(bc+b+1)+bc/(abc+bc+b)
=1/(bc+b+1)+b/(bc+b+1)+bc/(bc+b+1)
=(bc+b+1)/(bc+b+1)=1