Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
Ta có a2 + b2 + c2 = 14
=> (a2 + b2 + c2)2 = 196
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 196
=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196
Lại có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> 2(ab + bc + ca) = -14
=> ab + bc + ca = -7
=> (ab + bc + ca)2 = 49
=> a2b2 + b2c2 + c2a2 + 2ab2c + 2a2bc + 2abc2 = 49
=> a2b2 + b2c2 + c2a2 + 2abc(a + b + c) = 49
=> a2b2 + b2c2 + c2a2 = 49
Khi đó a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196
<=> a4 + b4 + c4 + 2.49 = 196
=> a4 + b4 + c4 + 98 = 196
=> a4 + b4 + c4 = 98
Vậy N = 98
lại nhầm lần này đúng
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=-1\)
Xét \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(-1\right)=4\Leftrightarrow a^4+b^4+c^4=6\)