Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:M=a3+b3+c(a2+b2)-abc
=(a+b)(a2-ab+b2)-(a+b)(a2+b2)+(a+b).ab
=(a+b)(a2-ab+b2-a2-b2+ab)
=(a+b).0=0
Vậy GT của M là:0
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+c=-b\\b+c=-a\end{cases}}\)
\(A=\left(a^3+ca^2\right)+\left(b^2+cb^2\right)-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=a^2.\left(-b\right)+b^2.\left(-a\right)-abc\)
\(=-a^2b-ab^2-abc\)
\(=-ab\left(a+b+c\right)=0\)
tui học lớp 7 nhưng tui nghĩ chỉ cần dựa vào các hằng đẳng thức đáng nhớ là ra
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(=a^3+b^3+a^2c+b^2c-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
Do \(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+c=-b\\b+c=-a\end{cases}}\)
suy ra: \(M=-a^2b-ab^2-abc\)
\(=-ab\left(a+b+c\right)=0\) (do a+b+c = 0)
\(A^3+B^3+A^2C+B^2C-ABC\)
\(=\left(A+B\right)\left(A^2-AB+B^2\right)+C\left(A^2-AB+B^2\right)\)
\(=\left(A^2-AB+B^2\right)\left(A+B+C\right)\)
\(=\left(A^2-AB+B^2\right).0\)
\(=o\)
là 0 chứ rút gọn gì nữa