Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách lầy lội nhất khai triển hết ra :|
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
Biến đổi vế traias ta có:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=VP\)
=>đpcm
b)Có: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2\le0\)
\(\Leftrightarrow-\left(a^2d^2-2abcd+b^2c^2\right)\le0\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\), luôn luôn đúng
=>đpcm
a) Ta có:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2b^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) theo a) \(\Rightarrow\)\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Dấu bằng xảy ra khi ad=bc => a/b=c/d
a,\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b,Xét hiệu
\(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2=\left(ad-bc\right)^2\ge0\)
\(\Rightarrow\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
a)Ta có:VT=(ac+bd)2+(ad-bc)2=a2c2+b2d2+2acbd+a2d2+b2c2-2adbc
=a2c2+b2c2+b2d2+a2d2
=(a2+b2)(c2+d2)(ĐPCM)
b)theo câu a) ta có:(ac+bd)2 ≤(a2+b2)(c2+d2)(vì (ad-bc)2 ≥0)
Dấu bằng xảy ra khi:ad=bc
Bài làm:
a) Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
=> đpcm
b) CM bất đẳng thức Bunyakovsky chắc được dùng Cauchy đấy nhỉ!
Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
Áp dụng bất đẳng thức Cauchy: \(a^2d^2+b^2c^2\ge2abcd\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+2abcd+b^2d^2=\left(ac+bd\right)^2\)
=> đpcm