K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Đk để các phân số tồn tại là a,b,c đều khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a = a+b+c/a+b+c = 1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2 = 1/3

=> ĐPCM

k mk nha

31 tháng 12 2017

Nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}>>\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\) rồi áp dụng tính chất dãy tỉ số bằng nhau suy ra a=b=c ( ko ra được thì đừng giải bài này vì sẽ hơi khó đấy )

Tách (a+b+c)^2 = a^2 +b^2 + c^2 + 2ab +2bc +2ca. Từ a=b=c >> ab=a^2, bc=b^2, ca=c^2. Vậy 2ab+2bc+2ca=2a^2+2b^2+2c^2

>>  (a+b+c)^2 = a^2 +b^2 + c^2 + 2a^2+2b^2+2c^2 = 3(a^2 +b^2 + c^2). Ghép vào cái phân số kia là ra.

1 tháng 1 2018

Câu 1 : 

ad=bc => a/b=c/d ( a,b,c,d khác 0 )

=> b/a=d/c

=> 1-b/a=1-d/c

=> a-b/a=c-d/c 

=> a/a-b=c/c-d

=> ĐPCM

Câu 2 : 

Đk để phân số tồn tại là a,b,c khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c=1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3

=> ĐPCM

k mk nha

1 tháng 1 2018

câu 2 : là (a+b+c)^2 nha mn mình nhầm

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

1 tháng 2 2019

Áp dụng bất đẳng thức tam giác: 

\(a+b>c\Rightarrow ac+bc>c^2\)(vì c > 0)

\(b+c>a\Rightarrow ab+ac>a^2\)(vì a > 0)

\(c+a>b\Rightarrow bc+ab>b^2\)(do b > 0)

Do đó: \(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)

\(\)

1 tháng 2 2019

Do a,b,c là 3 cạnh của 1 tam giác nên a+b>c;a+c>b;b+c>a(BĐT tam giác)

Ta có: \(2.\left(ab+bc+ca\right)=ab+bc+ac+ab+bc+ac=b\left(a+c\right)+a\left(b+c\right)+c\left(a+b\right)\)Do a+c>b nên \(b\left(a+c\right)>b^2\)

Do b+c>a nên \(a\left(b+c\right)>a^2\)

Do a+b>c nên \(c\left(a+b\right)>c^2\)

Vậy a(b+c)+b(a+c)+c(a+b)>\(a^2+b^2+c^2\)

hay \(2.\left(ab+bc+ca\right)>\)\(a^2+b^2+c^2\)(đpcm)

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:

Áp dụng BĐT Cô-si: 

$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:

$a^3+a\geq 2a^2$

$b^3+b\geq 2b^2$

$c^3+c\geq 2c^2$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$

Lại có:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$

$\geq a+b+c+3-3=a+b+c(2)$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$

Từ $(1); (2); (3)$ ta có đpcm.