Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\b=ck\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{b^3k^3+c^3k^3+d^3k^3}{b^3+c^3+d^3}=k^3\)
\(\dfrac{a}{d}=\dfrac{bk}{d}=\dfrac{ck^2}{d}=\dfrac{dk^3}{d}=k^3\)
Do đó: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) ; \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a^3}{b^3}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\dfrac{a}{d}\).
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
\(\frac{a^3}{c^3}=\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}\)
BÀI LÀM:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}=\frac{\left(2bk-b\right)^3+b^3}{\left(2dk-d\right)^3+d^3}=\frac{b^3.\left(2k-1\right)^3+b^3}{d^3.\left(2k-1\right)^3+d^3}=\frac{b^3.\left[\left(2k-1\right)^3+1\right]}{d^3.\left[\left(2k-1\right)^3+1\right]}=\frac{b^3}{d^3}\left(1\right)\)
Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^3}{c^3}=\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}\left(đpcm\right)\)