Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=1\)
ta có \(\left\{{}\begin{matrix}\dfrac{ab}{a+b}=\dfrac{ac}{a+c}\\\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a.\dfrac{b}{a+b}=a.\dfrac{c}{c+a}\\b.\dfrac{a}{a+b}=b.\dfrac{c}{b+c}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a+b}=\dfrac{c}{c+a}\\\dfrac{a}{a+b}=\dfrac{c}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1+\dfrac{b}{a}=1+\dfrac{c}{a}\\1+\dfrac{a}{b}=1+\dfrac{c}{b}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{c}{b}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\dfrac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)
Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)
=> (n + 1).n : 2 = a.111
=> n(n + 1) = a.222
=> n(n + 1) = a.2.3.37
a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6
=> n(n + 1) = 36.37
=> n = 36
Vậy cần 36 số hạng
cho mình nha
a) Theo đề ta có :
\(a+b=\frac{1}{2}\);\(a+c=\frac{2}{3}\) và \(b+c=\frac{3}{4}\)
\(\Rightarrow a+b+a+c+b+c=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}\)
\(\Rightarrow2a+2b+2c=\frac{6}{12}+\frac{8}{12}+\frac{9}{12}\)
\(\Rightarrow2\left(a+b+c\right)=\frac{23}{12}\)
\(\Rightarrow a+b+c=\frac{23}{12}:2=\frac{23}{12}.\frac{1}{2}\)
\(\Rightarrow a+b+c=\frac{23}{24}\)
* \(a=\left(a+b+c\right)-\left(b+c\right)=\frac{23}{24}-\frac{3}{4}=\frac{5}{24}\)
* \(b=\left(a+b+c\right)-\left(a+c\right)=\frac{23}{24}-\frac{2}{3}=\frac{7}{24}\)
Dễ mà...bn tìm c tương tự như a;b
b) \(ab=\frac{3}{5};bc=\frac{4}{5};ac=\frac{3}{4}\)
\(\Rightarrow ab.bc.ac=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}\)
\(\Rightarrow\left(abc\right)^2=\frac{9}{25}\)
\(\Rightarrow abc=\frac{3}{5}\) hoặc \(abc=-\frac{3}{5}\)
* nếu abc = 3/5 :
=> a = abc : bc = 3/5 : 4/5 =3/4
.....dễ....tương tự tìm b;c
* nếu abc = -3/5 :
=> a = abc : bc = -3/5 : 4/5 = -3/4
tương tự tìm b;c
c) a(a+b+c) = 12 ; b(a+b+c) = 18 ; c(a+b+c)=38
=> a(a+b+c) +b(a+b+c) + c(a+b+c ) = 12 + 18 + 38
=> (a+b+c)(a+b+c) = 68
=> a+b+c = .... hoặc a+b+c = ...
Hình như đề sai .....làm tương tự như bài a
d) ab = c ; bc = 4a ; ac = 9b
=> ab . bc . ac = c . 4a . 9b
=> (a+b+c)\(^2\) = abc . 36
=> \(\left(a+b+c\right)^2:\left(abc\right)=36\)
\(\Rightarrow abc=36\)
*\(a=abc:\left(bc\right)=36:\left(4a\right)\) \(\Rightarrow a=36:4:a=9:a\) \(\Rightarrow a^2=9\Rightarrow a=3\) hoặc a=-3
*\(b=abc:\left(a.c\right)=36:\left(9b\right)=36:9:b=4:b\) \(\Rightarrow b^2=4\) => b =-2 hoặc b=2
*\(c=abc:\left(ab\right)=36:c\) \(\Rightarrow c^2=36\) => c = -6 hoặc c=6
cho \(b^2=a.c-a^2=b.d\)
c/m:\(\dfrac{a^3+b^3-c^3}{b^3+c^2-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^2\)
\(b^2=a.c\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)
\(c^2=b.d\)
\(\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
\(=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(đpcm\right)\)
\(b^2=a\cdot c\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(đặt\):\(\dfrac{a}{b}=\dfrac{b}{c}=k,ta\) \(có\):\(a=bk;b=ck\)
\(\dfrac{a}{c}=\dfrac{bk}{c}=\dfrac{ck+k}{c}=k^2\left(1\right)\)
\(\left(\dfrac{a+2012b}{b+2102c}\right)^2=\left(\dfrac{bk+2012b}{ck+2012c}\right)^2=\left(\dfrac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\dfrac{b}{c}\right)^2=k^2\left(2\right)\)Từ \(\left(1\right)và\left(2\right)\Rightarrow\dfrac{a}{c}=\left(\dfrac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
1.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(7a=9b=21c=\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{15}{\dfrac{5}{63}}=15\cdot\dfrac{63}{5}=189\\ \Rightarrow\left\{{}\begin{matrix}7a=189\\9b=189\\21c=189\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=189:7\\b=189:9\\c=189:21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)
2.
\(b^2=ac\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\)
\(\dfrac{b}{c}=\dfrac{a}{b}=k\Rightarrow b=ck;a=bk\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+c^2k^2}{b^2+c^2}=\dfrac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\\ \dfrac{a}{c}=\dfrac{bk}{c}=\dfrac{ck\cdot k}{c}=k^2\\ \Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Câu 2:
Ta có:
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
\(\RightarrowĐPCM\)
\(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=> ( a + b ) ( c -a ) = ( a + c ) ( a - b )
=> a ( c - a ) + b ( c - a ) = a ( a - b ) + c ( a - b )
=> ac - aa + bc - ba = aa - ab + ca - bc
=> - aa - aa = - bc - bc
=> - 2 a 2 = - 2 bc
=> a 2 = bc
Vậy \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)thì a 2 = bc