Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(a+b\right)^2=a^2+2ab+b^2=a^2-2ab+b^2+4ab=\left(a-b\right)^2+4ab^{\left(đpcm\right)}\)
b)Từ kết quá câu a),ta suy ra: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4.20=81-80=1\)
\(\Rightarrow a-b=1\Rightarrow\left(a-b\right)^{2015}=1^{2015}=1\)
Vậy \(\left(a-b\right)^{2015}=1\)
Ta có : \(a^{2012}+b^{2012}+a^{2014}+b^{2014}=\left(a^{2012}+a^{2014}\right)+\left(b^{2012}+b^{2014}\right)\ge2a^{2013}+2b^{2013}\)
( AD BĐT Cô - si cho a ; b dương )
Dấu " = " xảy ra \(\Leftrightarrow a^{2012}=a^{2014};b^{2012}=b^{2014}\) \(\Leftrightarrow a=b=1\left(a,b>0\right)\)
\(\Rightarrow a^{2015}+b^{2015}=1+1=2\)
Ta có\(\left(a-b\right)^2=a^2+2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
\(=81-80=1\)
Mà \(a< b\Rightarrow a-b=-1\)
\(\Rightarrow\left(a-b\right)^{2017}=-1\)
Ta có a+b=9
\(\Rightarrow\left(a+b\right)^2=81\)
\(\Rightarrow\left(a-b\right)^2+4ab=81\)
\(\Rightarrow\left(a-b\right)^2=81-4\cdot20=1\)
\(\Rightarrow a-b=\pm1\)
mà a<b nên a-b<0 => a-b=1
Vậy \(\left(a-b\right)^{2017}=-1^{2017}=-1\)
Có a+b = 9 <=> \(\left(a+b\right)^2\) = 81 <=> \(\left(a-b\right)^2\) +4ab= 81 <=> \(\left(a-b\right)^2\) +4.20 = 81
<=> \(\left(a-b\right)^2\) = 1 Mà a<b <=> a-b = -1
Có \(\left(-1\right)^{2017}\) = -1
bạn có chép sai đầu bài ko??
a+b=9 rồi thì sẽ tinh được (a+b)2017con j
Có : a+b=9 nên (a+b)2=92=81
Suy ra :a2+2ab+b2=81 suy ra a2+b2=41
Lại có (a-b)2=a2-2ab+b2=41-40=1 nên (a-b)2=1
Suy ra : a-b= 1 hoặc =-1 suy ra (a-b)2017=1 hoặc =-1
a)\(a+b=-5\)
\(\Rightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+2ab+b^2=25\)
\(\Leftrightarrow a^2+12+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-5\left(13-6\right)=-35\)
Ta có: \(\hept{\begin{cases}a+b=9\\ab=20\end{cases}\Rightarrow\hept{\begin{cases}a=9-b\\ab=20\end{cases}}}\)
\(\Leftrightarrow\left(9-b\right)b=20\)
\(\Rightarrow9b-b^2-20=0\)
\(\Rightarrow5b-20+4b-b^2=0\)
\(\Rightarrow5\left(b-4\right)+b\left(4-b\right)=0\)
\(\Rightarrow5\left(b-4\right)-b\left(b-4\right)=0\)
\(\Rightarrow\left(5-b\right)\left(b-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-b=0\\4-b=0\end{cases}\Rightarrow\orbr{\begin{cases}b=5\\b=4\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}a=9-b=9-5=4\\a=9-b=9-4=5\end{cases}}\)
Với a< b => a = 4; b = 5 thì (a-b)2018=(4-5)2018= 1
Vậy (a-b)2018=1 khi a+b=9 và ab=20 (với a<b)
\(\hept{\begin{cases}a+b=9\\ab=20\end{cases}}\Leftrightarrow\hept{\begin{cases}a=9-b\\ab=20\end{cases}}\)
\(\Leftrightarrow\left(9-b\right)b=20\)
\(\Leftrightarrow9b-b^2-20=0\)
\(\Leftrightarrow5b-20+4b-b^2=0\)
\(\Leftrightarrow5\left(b-4\right)-b\left(b-4\right)=0\)
\(\Leftrightarrow\left(5-b\right)\left(b-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5-b=0\\b-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=5\\b=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=9-b=9-5=4\\a=9-b=9-4=5\end{cases}}\)
- Nếu b=5; a=4 thì A=(a-b)2015=(4-5)2015=-1
- Nếu b=4; a=5 thì A=(a-b)2015=(5-a)2015=1
@ giải phức tạp thế ai bắt tính a, b đâu
(a+b)=9
(a+b)^2=9^2
(a-b)^2=(a+b)^2-4ab=1
Ia-bI=1 a<b=> (a-b)=-1
=> (a-b)^2015=-1
\(A=\left(a-b\right)^2=\left(a+b\right)^2-4ab=4-\left(4.-1\right)=4+4=8\)
Vậy A=8
Do \(\left(a+b\right)^2=a^2+2ab+b^2\)nên \(a^2+b^2=\left(a+b\right)^2-2ab=9^2-2.20=41\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2=41-2.20=1\Rightarrow a-b=1\)hoặc \(a-b=-1\)
Với \(a-b=1\) thì \(\left(a-b\right)^{2015}=1^{2015}=1\)
Với \(a-b=-1\) thì \(\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)