Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
1) x3 + y3 = ( x + y )3 - 3xy( x + y ) = 125 - 90 = 35
2) E = 2( a + b )( a2 - ab + b2 ) - 3a2 - 3b2 = 2a2 - 2ab + 2b2 - 3a2 - 3b2 = -( a + b )2 = -1
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
Để tìm Max M thì ta cần c/m \(a^2+b^2\le ab+1\)
Giả sử điều cần c/m là đúng , khi đó , ta có :
\(a^2+b^2\le ab+1\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) ( do \(a^3+b^3=a^5+b^5\))
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+a^5b+b^5a+b^6\)
\(\Leftrightarrow2a^3b^3\le a^5b+b^5a\)
\(\Leftrightarrow a^5b+b^5a-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)\ge0\) ( điều này luôn đúng với a ; b dương )
=> Điều giả sử là đúng
\(\Rightarrow a^2+b^2\le ab+1\)
\(\Rightarrow M=a^2+b^2-ab\le1\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}ab=0\\a^2-b^2=0\end{cases}}\)
\(\Leftrightarrow a=0\) hoặc \(b=0\)hoặc \(a^2=b^2\)
\(\Leftrightarrow a^2=b^2\)( a , b dương )
\(\Leftrightarrow a=b\)
Thế a = b vào b/t \(a^3+b^3=a^5+b^5\), ta có :
\(2a^3=2a^5\)
\(\Leftrightarrow a^3=a^5\)\(\Leftrightarrow\frac{a^3}{a^5}=1\Leftrightarrow\frac{1}{a^2}=1\Leftrightarrow a=1\left(a>0\right)\)
\(\Leftrightarrow b=1\)
Vậy ...
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=\left[\sqrt{\left(a+b\right)^2-4ab}\right]^3+3ab\sqrt{\left(a+b\right)^2-4ab}\)
\(=\sqrt{5^2-4\cdot\left(-2\right)}^3+3\cdot\left(-2\right)\cdot\sqrt{5^2-4\cdot\left(-2\right)}\)
\(=33\sqrt{33}+3\cdot\left(-2\right)\cdot\sqrt{33}\)
\(=27\sqrt{33}\)