K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

\(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{4}{2}=2\)

Dấu ''='' xảy ra khi a = b = 1 

Vậy GTNN của A bằng 2 tại a = b = 1   

\(A=a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

\(=4-2ab\)

Giả sử \(a;b\ge0\)

Áp dụng bất đẳng thức Cô-si cho hai số a;b dương thì ta có:

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow1\ge ab\)

\(\Rightarrow-2ab\ge-2\)

\(\Leftrightarrow4-2ab\ge2\)

\(\Leftrightarrow A\ge2\)

Vậy \(MinA=2\)

Dấu '' = '' xảy ra khi: \(a=b=1\)

24 tháng 4 2021

a)Ta có:

 \(a+b+ab=a^2+b^2\).

\(\Leftrightarrow a^2-ab+b^2=a+b\).

Ta có:

\(P=a^3+b^3+2020\).

\(P=\left(a+b\right)\left(a^2-ab+b^2\right)+2020\).

\(P=\left(a+b\right)\left(a+b\right)+2020\)(vì \(a^2-ab+b^2=a+b\)).

\(P=\left(a+b\right)^2+2020\).

Ta có:

\(\left(a+b\right)^2\ge0\forall a;b\).

\(\Rightarrow\left(a+b\right)^2+2020\ge2020\forall a;b\).

\(\Rightarrow P\ge2020\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a+b+ab=a^2+b^2\\\left(a+b\right)^2=0\end{cases}}\Leftrightarrow a=b=0\).

Vậy \(maxP=2020\Leftrightarrow a=b=0\).

24 tháng 4 2021

b)\(A=\frac{27-12x}{x^2+9}\).

Vì \(x^2+9>0\forall x\)nên \(A\)luôn được xác định.

 \(A=\frac{27-12x}{x^2+9}=\frac{4x^2-4x^2+27-12x}{x^2+9}=\frac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)

\(A=\frac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}=4-\frac{\left(2x+3\right)^2}{x^2+9}\).

Ta có:

\(\left(2x+3\right)^2\ge0\forall x\).

\(\Rightarrow\frac{\left(2x+3\right)^2}{x^2+9}\ge0\forall x\)(vì \(x^2+9>0\forall x\)).

\(\Rightarrow-\frac{\left(2x+3\right)^2}{x^2+9}\le0\forall x\).

\(\Rightarrow4-\frac{\left(2x+3\right)^2}{x^2+9}\le4\forall x\).

\(\Rightarrow A\le4\).

Dấu bằng xảy ra.

\(\Leftrightarrow\left(2x+3\right)^2=0\Leftrightarrow x=-\frac{3}{2}\).

Vậy \(maxA=4\Leftrightarrow x=-\frac{3}{2}\).

19 tháng 8 2017

theo bđt bu-nhi-acop-xki cho 3 số :\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2.\) Ta có:

\(3P=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2\Leftrightarrow3P\ge2010^2\Leftrightarrow P\ge1346700\)

Dấu "=" xảy ra khi a=b=c=670

=> Min P=1346700

20 tháng 8 2019

\(P\ge\frac{\left(a+b+c\right)^2}{3}=\frac{2010^2}{3}=..\)

Đẳng thức xảy ra khi a=b=c=670

Chắc là vậy:v

21 tháng 8 2019

cảm ơn bạn

18 tháng 2 2018

dự đoán của chúa Pain a=b=3

áp dụng BDT cô si dạng " Senpou" ta có

lưu ý dạng " Senpou" ko có trong sách giáo khoa 

và chỉ được sử dùng khi trong tình thế nguy cấp như . thể hiện . tán gái ...., và chỉ lừa được những thằng ngu :)

ko nên dùng trc mặt thầy cô giáo

\(27=a^2+b^2+ab\ge3\sqrt[3]{a^2b^2ab}=3ab.\)

\(a^3+b^3+3^3\ge3\sqrt[3]{a^3b^3.3^3}=9ab\)

mà \(3ab\le27\Leftrightarrow9ab\le27.3=81\)

suy ra 

\(a^3+b^3+3^3\ge81\Leftrightarrow a^3+b^3\ge81-27=54\)

dấu = xảy ra khi a=b=3

19 tháng 2 2018
sai rôi
12 tháng 2 2016

A=a^3+2ab-ab+b^3 

A=(a^3+b^3)+ab

A= (a+b)(a^2-ab+b^2) +ab

A=a^2+b^2 

do a+b=1 => a^2+2ab+b^2=1 (*)  mà (a-b)^2 >=0  => a^2+b^2-2ab>=0 (**)

(*), (**) => a^2+b^2>=1/2. vậy Min A=1/2 <=> a=b

12 tháng 2 2016

 

A = a( a+ 2b ) + b( b- a )

 A = a.a+ a.2b + b.b- a.b

A = a+ 2ab + b- ab

A = (a3+b3)+(2ab-ab)

A= (a3+b3)+ab

không biết làm nữa

5 tháng 6 2016

Bình phương 2 vế đẳng thức x + y + z = 3 , ta được : 

x2 + y2 + z2 + 2 ( xy + yz + zx ) = 9     (1)

tức là A + 2B = 9

Dễ dàng chứng minh được :

> B      (2)

Xảy ra đẳng thức khi và chỉ khi x = y = z

a, Từ (1) và (2) suy ra 3A > A + 2B = 9, nên A  > 3

Do đó min A= 3 khi và chỉ khi x = y = z =1

b, Từ (1) và (2) suy ra 3B < A + 2B = 9 , nên B < 3 . Do đó max B = 3 khi và chỉ khi x = y = z =1

c, Ta có  A + 2B = 9 mà B <  3 ( câu b ) nên A + B > 6

Do đó min ( A + B ) = 6 khi và chỉ khi x = y = z = 1

5 tháng 6 2016

hướng dẫn cách giải tại đây: http://123doc.org/document/27702-ba-phuong-phap-tim-gia-tri-lon-nhat-va-nho-nhat.htm