Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc :)
Hok tốt . Nhìn câu b mik nản quá nên thôi :)
\(A=a^2\left(2a-3\right)+b^2\left(-3+2b\right)\)
\(=2a^3-3a^2-3b^2+2b^3\)
\(=2\left(a^3+b^3\right)-3a^2-3b^2\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3a^2-3b^2\)
\(=2\left(a^2-ab+b^2\right)-3a^2-3b^2\)(vì a + b = 1)
\(=2a^2-2ab+2b^2-3a^2-3b^2\)
\(=-a^2-2ab-b^2=-\left(a^2+2ab+b^2\right)\)
\(=-\left(a+b\right)^2=-1^2=-1\)(vì a + b = 1)
2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab) =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m
bài 1
\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)
\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay \(a+b=1\) vào ta được:
\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
Vậy ......................
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
A = (2a + 2b +2c - 3c)^2 + (2b + 2c +2a - 3a)^2 + (2c + 2a +2b -3b)^2
Đặt a + b + c = x thì
A = (2x - 3c)^2 + (2x - 3a)^2 + (2x - 3b)^2
=4x^2 - 12cx + 9c^2 + 4x^2 - 12ax + 9x^2 + 4x^2 - 12bx + 9b^2
=12x^2 - 12x(a + b + c) + 9(a^2 + b^2 + c^2)
=12x^2 - 12x^2 + 9(a^2 + b^2 + c^2) =9(a^2 + b^2 + c^2) =9m
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(=\left(4a^2+4b^2+c^2+8ab-4ac+4bc\right)+\left(4b^2+4c^2+a^2+8bc-4ba-4ac\right)\)\(+\left(4c^2+4a^2+b^2+8ac-4cb-4ab\right)\)
\(=9a^2+9b^2+9c^2\)
\(=9\left(a^2+b^2+c^2\right)\)
\(=9m\)
M = 2(a+b) ( a^2 - ab + b ^2) - 3( a^2 + b ^2)
= 2 (a^2 + b^2 ) - 2ab - 3(a^2 + b^2)
= - ( a^2+2ab+b^2) = - (a+b)^2 = -1
Chúc bạn học tốt!
Thanks!