Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\) (1)
Thay a + b = 1 vào (1) ta được:
\(1^3=a^3+3ab.1+b^3\)
\(1^3=a^3+3ab+b^3\)
Hay: \(a^3+3ab+b^3=1\)
=> đpcm
ta có :
(a+b)3=a3+3a2b+3ab2+b3
(a+b)3=a3+3ab(a+b)+b3 (1)
thay a+b=1 vào (1) ta được :
13=a3+3ab.1+b3
<=>1=a3+3ab+b3
<=>a3+b3=1-3ab
a^3+b^3+3ab(a+b) =(a+b)^3
mà a+b=1 suy ra a^3+b^3+3ab=1
suy ra a^3+b^3=1-3ab
\(a^3-b^3=1+3ab\)
Biến đổi VT ta được :
\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)=a^2-2ab+b^2+3ab=\left(a+b\right)^2+3ab=1+3ab=VP\)
Vậy \(a^3-b^3=1+3ab\)
Cho a - b = 1 . Chứng minh a^3 - b^3 = 1 + 3ab
a3−b3=1+3ab
Biến đổi VT ta được :
VT=(a−b)(a2+ab+b2)=a2−2ab+b2+3ab=(a+b)2+3ab=1+3ab=VP
suy ra................
k mình nha
Lời giải:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3-3ab+1=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)
\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)
Vì $a,b>0$ nên $a+b+1\neq 0$
Do đó:
\(a^2+b^2+1-a-b-ab=0\)
\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)
\(\Rightarrow a=b=1\)
Do đó: \(a^{2018}+b^{2019}=1+1=2\)
Ta có đpcm.
1.
a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)
=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]
=(a^4-1)(a^4-16)
b)(3a+1)^2 + (2-3a)(2+3a)
= 9a2 + 6a +1 + 4 - 9a2
= 6a+5
2.
Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)
1.
a) (a + 1)(a + 2)(a2 + 4)(a - 1)(a2 + 1)(a - 2)
= [(a + 1)(a - 1)][(a + 2)(a - 2)](a2 + 4)(a2 + 1)
= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)
= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]
= (a4 - 1)(a4 - 16)
= a8 - 16a4 - a4 + 16
= a8 - 17a4 + 16
b) (3a + 1)2 + (2 - 3a)(2 + 3a)
= 9a2 + 6a + 1 + 22 - 9a2
= (9a2 - 9a2) + 6a + (1 + 4)
= 6a + 5
2.
a + b = 1
(a + b)3 = 13
a3 + 3a2b + 3ab2 + b3 = 1
a3 + b3 + 3ab(a + b) = 1
a3 + b3 = 1 - 3ab(a + b)
Mà a + b = 1
=> a3 + b3 = 1 - 3ab
Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab
a)\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)