K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Chào bạn!

Có lẽ kì nghỉ hè đã làm phai mờ kiến thức nhỉ, gặp bài này mình cũng hơi thấy đau đầu đây

Mình sẽ chứng minh bài toán này như sau:

Theo bài , ta có:

\(A=5x+y\Leftrightarrow16A=80x+16y\)

Vì \(A⋮19\Rightarrow16A⋮19\Leftrightarrow80x+16y⋮19\)

Nhận thấy: \(80x+16y=20\left(4x\right)-3y+19y⋮19\)

Mà \(19y⋮19\Rightarrow20\left(4x\right)-3y⋮19\)

Trong đó: \(\left(20;19\right)=1\)

\(\Rightarrow4x-3y⋮19\left(\text{đ}pcm\right)\)

Cảm ơn đã theo dõi câu trả lời của mình

24 tháng 11 2017

Mik cảm ơn bạn nhìu nha ^^ 

18 tháng 1 2019

ta có: P(x) chia hết cho 7 với mọi x

=> Xét TH: P(0) = a.02 +b.0 + c = 0 + c => c chia hết cho 7

P(1) = a.12 + b.1 + c = a + b + c => a + b + c chia hết cho 7

                                                      mà c chia hết cho 7 (cmt)

=> a + b chia hết cho 7 (*)

P(-1) = a.(-1)2 + b.(-1) + c = a - b + c  chia hết cho 7 => a - b chia hết cho 7 ( do c chia hết cho 7)

=> a + b + a - b chia hết cho 7

=> 2a chia hết cho 7

=> a chia hết cho 7 ( do 2 không chia hết cho 7)

mà a+ b chia hết cho 7

=> b chia hết cho 7

21 tháng 5 2020

7r6jp

28 tháng 4 2015

f(x) chia hết cho 3 với mọi x

=> f(0) chia hết cho 3 => C chia hết cho 3 

f(1) ; f(-1) chia hết cho 3 

=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3

=> f(1) + f(-1) chia hết cho 3 và  f(1) -  f(-1) chia hết cho 3 

f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3

f(1) - f(-1) chia hết cho 3  => 2B chia hết cho 3 => B chia hết cho 3

Vậy.......................

28 tháng 4 2015

f(x) chia hết cho 3 với mọi x

=> f(0) chia hết cho 3 => C chia hết cho 3 

f(1) ; f(-1) chia hết cho 3 

=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3

=> f(1) + f(-1) chia hết cho 3 và  f(1) -  f(-1) chia hết cho 3 

f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3

f(1) - f(-1) chia hết cho 3  => 2B chia hết cho 3 => B chia hết cho 3

Vậy.......................

20 tháng 6 2019

Ta có: a, b là các số tự nhiên không chia hết cho 5

=> Chữ số cuối cùng các số a, b  có thể là 1, 2, 3, 4, 6, 7, 8,9

 mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...

=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6

=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6

=> Chữ số tận cùng các số a^4m -1  và b^4m -1 là 0 hoặc 5 

=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)

=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5

20 tháng 6 2019

Hoặc nếu em đã được học kiến thức đồng dư:

a, b là các số không chia hết cho 5

=> a^4 , b^4 có chữ số tận cùng là 1, 6 

=> a^4m, b^4m có chữ số tận cùng 1, 6

=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)

11 tháng 10 2017

Ta có :

A= ax+ay+bx+by+x+y

= a(x+y)+b(x+y)+x+y

= (a+b+1)(x+y)

= (\(\dfrac{1}{3}\)+1).\(\dfrac{-9}{4}\)

= \(\dfrac{4}{3}.\dfrac{-9}{4}\)

= -3

11 tháng 10 2017

B= ax+ay-bx-by-x-y

= a(x+y)-b(x+y)-(x+y)

= (a-b-1)(x+y)

= (\(\dfrac{1}{2}\)-1).\(\dfrac{1}{2}\)

= \(\dfrac{-1}{2}.\dfrac{1}{2}\)

= \(\dfrac{-1}{4}\)

2 tháng 4 2016

xét x=o nên f(x) = c nên c chia hết cho 3

xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)

xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)

từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3