Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hai pt: \(x^2+ax+b=0\) có \(\Delta_1=a^2-4b\)
\(x^2+cx+d=0\) có \(\Delta_2=c^2-4d\)
Ta có:
\(\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)\)
TH1: nếu \(b+d< 0\Rightarrow-4\left(b+d\right)>0\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)>0\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1;\Delta_2\) dương hay ít nhất 1 trong 2 pt có nghiệm \(\Rightarrow\) pt đã cho có nghiệm
TH1: \(b+d>0\Rightarrow ac\ge2\left(b+d\right)\Rightarrow-4\left(b+d\right)\ge-2ac\)
\(\Rightarrow\Delta_1+\Delta_2\ge a^2+c^2-2ac=\left(a-c\right)^2\ge0\)
\(\Rightarrow\) tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1;\Delta_2\) không âm hay ít nhất 1 trong 2 pt có nghiệm
Vậy pt đã cho luôn có nghiệm
Gọi nghiệm chung phương trình là x2
Phương trình x2 + ax + b = 0 có nghiệm
\(x_1+x_2=-a;x_1.x_2=b\)
Tương tự với phương trình x2 + cx + d = 0
=> \(x_3+x_2=-c;x_2.x_3=d\)
Khi đó b - d = x2(x1 - x3)
a - c = x3 - x1
ad - bc = -(x1 + x2).x2.x3 + x1.x2(x3 + x2) = \(x_2^2\left(x_1-x_3\right)\)
Khi đó P = (b - d)2 + (a - c)(ad - bc)
= \(\left[x_2\left(x_1-x_3\right)\right]^2-\left(x_1-x_3\right)x_2^2\left(x_1-x_3\right)=0\)(đpcm)
Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)
Ta lại có
\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)
\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)
\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)
\(=\left(a-b\right)^2\ge0\)
\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm
Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
4c = -( a +2b)
\(\Delta=b^2-4ac=b^2+a\left(a+2b\right)=a^2+b^2+2ab=\left(a+b\right)^2\ge0\)