K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Vì \(\hept{\begin{cases}a\ge3\\ab\ge6\end{cases}}\)=> \(b\ge2\)

=> \(\hept{\begin{cases}a^2\ge9\\b^2\ge4\end{cases}}\)=> \(a^2+b^2\ge13\)

Dấu "=" xảy ra khi : \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

\(a^2+b^2=2\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=2\)

\(\Leftrightarrow2ab=\left(a+b\right)^2-2\)

Theo đề ra: \(P=3\left(a+b\right)+ab\)

\(\Leftrightarrow2P=6\left(a+b\right)+2ab\)

\(=6\left(a+b\right)+\left(a+b\right)^2-2\)

\(=\left(a+b\right)^2+2.3\left(a+b\right)+9-9-2\)

\(=[\left(a+b\right)+3]^2-11\)

\(\Leftrightarrow P=\frac{1}{1}\left(a+b+3\right)^2-\frac{11}{2}\)

Ta có: \(\left(a+b+3\right)^2\ge0\forall a,b\inℝ\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+3\right)^2-\frac{11}{2}\ge\frac{-11}{2}\forall a,b\inℝ\)

\(\Leftrightarrow MinP=\frac{-11}{2}\)

20 tháng 5 2016

Ta có:\(A\ge\left(a+b+1\right)\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}\)

Đặt \(t=a+b\)thì \(t\ge2\) theo AM-GM

Ta có:\(A\ge\frac{t^3}{2}+\frac{t^2}{2}+\frac{4}{t}=\frac{t^3}{2}+\frac{t^2}{4}+\frac{t^2}{4}+\frac{2}{t}+\frac{2}{t}\ge4+1+3=8\)

Đẳng thức xảy ra khi \(a=b=1\)

20 tháng 5 2016

Áp dụng bđt cosi ta dc

P>= (2canab+1)(2ab)+4/(2canab)

=8

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

19 tháng 5 2017

2a² + b²/4 + 1/a² = 4 
⇔ 8a⁴ + a²b² + 4 = 16a² 
⇔ a²b² = -8a⁴ + 16a² - 4 
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4 
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4 
⇔ │ab│ ≤ 2 
⇔ -2 ≤ ab ≤ 2 

--> A = ab + 2011 ≥ 2009 

Dấu " = " xảy ra ⇔ 
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1 
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2