K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010

19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009

Vậy A<B

Xin lỗi mình chịu câu trên

5 tháng 3 2019

Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\)                                    Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)

                                                                               19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+19}{19^{2010}+1}\)                                       19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\)                                19B=\(1+\frac{18}{19^{2009}+1}\)

      19A=\(1+\frac{18}{19^{2010}+1}\)

                         Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)

                          \(\Leftrightarrow A< B\)

                            Vậy\(A< B\)

1 tháng 4 2016

bạn c/m bài toán \(\frac{a}{b}<1;a,b>0\Rightarrow\frac{a+c}{b+c}>\frac{a}{b}\)

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

13 tháng 11 2016

2222222222222222222222222

13 tháng 11 2016

2222222222222222222

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)