Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Theo BĐT Cô-si: \(a^2+b^2\ge2ab\) (1) ; \(b^2+c^2\ge2bc\) (2) ; \(c^2+a^2\ge2ca\) (3)
Cộng vế theo vế (1), (2) và (3) ta được \(2P\ge2\left(ab+bc+ca\right)\Leftrightarrow P\ge ab+bc+ca=9\)
Vậy minP = 9, dấu bằng xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=9\\ab+bc+ca=9\end{cases}\Leftrightarrow a=b=c=\sqrt{3}}\)
**Từ giả thiết \(\Rightarrow ab+c\left(a+b\right)=9\Leftrightarrow c=\frac{9-ab}{a+b}\left(+\right)\)mà a, b, c là các số thực \(\ge1\)nên a,b \(\in\)[\(1;+\infty\)), tức là a, b dương vô cực, lớn không giới hạn \(\Rightarrow\left(+\right)\)dương vô cực hay \(a^2+b^2+c^2\)cũng lớn không giới hạn
Do đó: Không tồn tại maxP với điều kiện a, b, c là các số thực \(\ge1\)
***Kết luận: minP = 9 ; maxP không tồn tại
Mình xin lỗi bạn Kim Huệ Thương nhé! Phần GTLN của câu này mình xin phép giải lại, mong bạn thông cảm vì sơ suất của mình nhé!
Ta có: \(a\ge1;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)(1)
Tương tự ta có: \(bc+1\ge b+c\)(2), \(ca+1\ge c+a\)(3)
Cộng vế theo vế (1), (2) và (3) ta được: \(ab+bc+ca+3\ge2\left(a+b+c\right)\Leftrightarrow a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
\(\Leftrightarrow\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-18=18\)
Dấu ''='' xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=18\\ab+bc+ca=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}or\hept{\begin{cases}a=1\\b=4\\c=1\end{cases}or\hept{\begin{cases}a=4\\b=1\\c=1\end{cases}}}}}\)
Xin lỗi bạn nhé! ^_^
+) Áp dụng BĐT Bu nhia có:
(x + y)2 = (x .1 + y .1)2 \(\le\) (x2 + y2). (12 + 12)
=> 1\(\le\) 2.(x2 + y2) => x2 + y2 \(\ge\) 1/2
Min A = 1/2 khi x = y = 1/2
+) A = x2 + y2 = (x+y)2 - 2xy \(\le\) (x+y)2 = 1 (Vì x; y \(\ge\) 0 và x+y=1 )
=> Max A = 1 khi x.y = 0 <=> x = 0 hoặc y = 0
Vậy Max A = 1 khi x = 0; y = 1 hoặc x = 1; y = 0
Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\Rightarrow2ab=\left(a+b\right)^2-4\)
Ta có: \(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
\(\le\sqrt{2\left(a^2+b^2\right)}-2=2\sqrt{2}-2\)
\(\Rightarrow2M\le2\sqrt{2}-2\Rightarrow M\le\sqrt{2}-1\)
Đẳng thức xảy ra khi \(a=b=\sqrt{2}\)
UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)
Tương tự cộng lại là xong
Theo bất đẳng thức Cauchy, ta có:
\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)
\(\Rightarrow P\ge a+b+c+6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)
\(\Leftrightarrow minP=1+1+1+6=9\)
Từ giả thiết a+b+c=abc và a2 = bc => b + c = a3 - a => b và c là 2 nghiệm của phương trình:
\(x^2-\left(a^3-a\right)x+a^2=0\) (1)
\(\Delta=\left(a^3-a\right)^2-\left(2a\right)^2=\left(a^3+a\right)\left(a^3-3a\right)=a^2\left(a^2+1\right)\left(a^2-3\right)\)
vì (1) có nghiệm nên \(\Delta=a^2\left(a^2+1\right)\left(a^2-3\right)\ge0\)
Mà \(a^2>0;a^2+1>0\) nên \(a^2-3\ge0\)hay \(a^2\ge3\)
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!
Mk ms tìm được GTNN thôi!
Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)
Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:
a2 + b2 \(\ge\) 2ab
\(\Leftrightarrow\) 1 \(\ge\) 2ab
\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0
\(\Leftrightarrow\) 1 - ab \(\ge\) ab
\(\Rightarrow\) A \(\ge\) ab(a + b)
Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)
\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)
Vậy ...
Chúc bn học tốt!
\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)
\(\Rightarrow a^3+b^3\le a^2+b^2=1\)
\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)
\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)
Cộng vế:
\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)
\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)
\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)