Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a2 + b2 = a2 + b2 + 2ab - 2ab = (a + b)2 - 2ab = s2 - 2p
b) a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)(a2 + 2ab + b2 - 3ab) = (a + b).[(a + b)2 - 3ab] = s.(s2 - 3p) = s3 - 3ps
c) a4 + b4 = a4 + b4 + 4a2b2 - 4a2b2 = (a2 + b2)2 - 4(ab)2 = (s2 - 2p)2 - 4p2
= (s2 - 2p - 2p)(s2 - 2p + 2p) = s2.(s2 - 4p) = s4 - 4ps2
a, \(a^2+b^2=\left(a+b\right)^2-2ab\)
Thay a+b=s; ab vào đa thức trên ta được:
\(\left(a+b\right)^2-2ab=s^2-2p\)
b, \(a^3+b^3=\left(a+b\right)^3+3a^2b-3ab^2\)
\(=\left(a+b\right)^3-3ab.\left(a+b\right)\)
Thay a+b=s; ab=p Ta được:
\(\left(a+b\right)^3-3ab.\left(a+b\right)=s^3-3sp\)
c, \(a^4+b^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(s^2-2p\right)^2-2p^2=s^4-4s^2p+2p^2\)
CHÚC HỌC TỐT!!
ý a)
(a+b)^2=a^2+b^2+2ab
=> 529=a^2+b^2+246 => a^2+b^2=283
(a^2+b^2)^2=a^4+b^4+2.a^2.b^2
=> 80089=a^4+b^4+30258 => a^4+b^4=49831
(a^2+b^2)(a^4+b^4)=a^6+b^6+a^2.b^4+b^2.a^4=a^6+b^6+a^2.b^2.(a^2+b^2)
=> 14102173=a^6+b^6+15129.283 => a^6+b^6=9820666
còn lại bạn tự tính
a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1
⇒ \(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)
⇒a\(^3\)+ b\(^3\)+ c\(^3\) ≤ \(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1
Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)
Vậy S = 0 + 0 + 1 = 1
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?