Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)
\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)
\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)
bài toán cực trị có ẩn trong đoạn là pahir cẩn thận này @
\(0\le a,b,c\le1\)\(\Rightarrow a\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a-ab-a^2+a^2b\ge0\)
\(\Leftrightarrow a^2b\ge ab+a^2-a\)
Tương tự \(b^2c\ge bc+b^2-b;c^2a\ge ca+c^2-c\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+bc+ca+ab-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc+a^2+b^2+c^2\ge a^2+b^2+c^2\)
dấu = xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\hept{ }\left(0,1,1\right),\left(0,0,1\right),\left(1,0,1\right)\left(1,1,0\right)\left(0,1,0\right),\left(1,0,0\right)\left\{\right\}\)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)
\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)
Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)
Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)
\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết
Vậy \(\sqrt{7}\) không phải là số hữu tỉ
\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.