Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình
\(x^3-3x^2+5x-17=0\Leftrightarrow\left(x-1\right)^3+2\left(x-1\right)-14=0\text{ }\left(1\right)\)
Chứng minh (1) có 1 nghiệm duy nhất:
+Phương trình bậc ba luôn có tối thiểu 1 nghiệm
+Giả sử (1) có 1 nghiệm là \(x=a\)
Nếu \(x>a\) thì \(x-1>a-1\Rightarrow\hept{\begin{cases}\left(x-1\right)^3>\left(a-1\right)^3\\x-1>a-1\end{cases}}\)
\(\Rightarrow\left(x-1\right)^3+2\left(x-1\right)-14>\left(a-1\right)^3+2\left(a-1\right)-14=0\) => (1) vô nghiệm
Nếu \(x< a\), tương tự, (1) cũng vô nghiệm.
Vậy (1) có duy nhất 1 nghiệm
Xét phương trình
\(y^3-3y^2+5y+11=0\text{ }\left(2\right)\)\(\Leftrightarrow\left(2-y\right)^3-3\left(2-y\right)^2+5\left(2-y\right)-17=0\)
Đây chính là phương trình (1) nhưng với biến \(2-y\) nên có nghiệm \(2-y=a\); mà theo đề bài, nghiệm của (2) là \(y=b\)
Nên \(2-b=a\)
\(\Rightarrow a+b=2\)
Xét phương trình
x3−3x2+5x−17=0⇔(x−1)3+2(x−1)−14=0 (1)
Chứng minh (1) có 1 nghiệm duy nhất:
+Phương trình bậc ba luôn có tối thiểu 1 nghiệm
+Giả sử (1) có 1 nghiệm là x=a
Nếu x>a thì x−1>a−1⇒{
(x−1)3>(a−1)3 |
x−1>a−1 |
⇒(x−1)3+2(x−1)−14>(a−1)3+2(a−1)−14=0 => (1) vô nghiệm
Nếu x<a, tương tự, (1) cũng vô nghiệm.
Vậy (1) có duy nhất 1 nghiệm
Xét phương trình
y3−3y2+5y+11=0 (2)⇔(2−y)3−3(2−y)2+5(2−y)−17=0
Đây chính là phương trình (1) nhưng với biến 2−y nên có nghiệm 2−y=a; mà theo đề bài, nghiệm của (2) là y=b
Nên 2−b=a
⇒a+b=2
\(a^3-3a^2+3a-1+2a-16=0\Leftrightarrow\left(a-1\right)^3+2a-16=0\)
Tương tự: \(\left(b-1\right)^3+2b+12=0\)
Cộng vế với vế:
\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)
\(\Leftrightarrow\left(a+b-2\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-1\right)+\left(b-1\right)^2+2\right]=0\)
\(\Leftrightarrow a+b-2=0\)
Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(P\le2a-b+2b-c+2c-a=a+b+c=3\)
Dấu '=" khi \(a=b=c=1\)
Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)
\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)
\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)
\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)
Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
Xét Bất đẳng thức phụ:
\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Tương tự ta có:
\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)
Cộng lại theo vế ta có:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)
Đpcm
a) Ta có:
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)
b) Ta có:
\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)
\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)
\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)
\(=-5ab\sqrt{ab}\)
Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)
Cộng lại thì:
\(LHS\le a+b+c=3\)
Đẳng thức xảy ra tại a=b=c=1
http://diendan.hocmai.vn/showthread.php?t=287459
a+b=2
muốn giải nhắn mình BnoHi facebook