Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))
=> P(0) = c = m2
P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))
=> a + b = k2 - c = k2 - m2 là số nguyên (*)
P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))
=> 4a + 2b + m2 = n2
=> 4a + 2b = n2 - m2 là số nguyên (1)
Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên
=> 2a nguyên => a nguyên
Kết hợp với (*) => b nguyên
Từ (1) => n2 - m2 chẵn (2)
=> (n - m)(n + m) chẵn
Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)
Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)
hay n2 - m2 chia hết cho 4
Kết hợp với (1) => \(2b⋮4\)
=> b chia hết cho 2 => b chẵn
Ta có đpcm
Bài này rất đơn giản dùng tính chất quan trọng của số chính phương là:
Một số chính phương khi chia 3 chỉ dư 0 hoặc 1
Chứng minh bổ đề:
Ta có : a là số nguyên nên a trong ba dạng: 3k ; 3k+1 hoăc 3k+2 với k nguyên
Với a=3k thì \(a^2=9k^2\)chia 3 dư 0
Với a=3k+1 thì \(a^2=\left(3k+1\right)^2=9k^2+6k^2+1\) chia 3 dư 1
Với a=3k+2 thì \(a^2=\left(3k+2\right)^2=9k^2+12k^2+4\) chia 3 dư 1
Bài giải
Ta đặt: \(A=a^3+3a^2+2a+2=a\left(a^2+3a+2\right)+2=\left(a+1\right)\left(a+2\right)a+2\)
Vì a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 3
nên a(a+1)(a+2) chia hết cho 3 nên A chia 3 dư 2
Vậy A không là số chính phương