K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 12 2022

Lời giải:

Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên

$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$

Nếu $2a+1=1$ thì $b-2=12:1=12$

$\Rightarrow a=0; b=14$ (thỏa mãn)

Nếu $2a+1=3$ thì $b-2=12:3=4$

$\Rightarrow a=1; b=6$ (thỏa mãn)

26 tháng 7 2018

a)vì n \(\varepsilon\)N* =>n>=1 

mà c^n=1=>c=1 

          Vậy c=1 

b)vì n>=1 mà c^n=0 

=>c=0

       Vậy c=0

26 tháng 7 2018

c^n = 1 => c = 1 ; c^n => c = 0

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

=>2ab-3a+b-9=0

=>b(2a+1)-3a-4,5-*4,5=0

=>b(2a+1)-1,5(2a+1)=4,5

=>(2a+1)(b-1,5)=4,5

=>(2a+1)(2b-3)=9

=>\(\left(2a+1;2b-3\right)\in\left\{\left(1;9\right);\left(3;3\right);\left(9;1\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(0;6\right);\left(1;3\right);\left(4;2\right)\right\}\)

14 tháng 12 2022

loading...

Bạn dùng phương pháp chặn `b` rồi tìm `a` nhé.

`8a^2 + 31b^2 = 2468 <=> 31b^2 <= 2468 <=> b^2 < 81 -> b = 1 -> 8.`

Từ đây tìm `a` theo `b` và nhớ thử lại nhé.

13 tháng 12 2022

=>3b(4a-3)+20a-15=2820

=>(4a-3)(3b+5)=2820

=>a chia 4 dư 1, b chia 3 dư 2

Do đó: \(\left(a,b\right)\in\varnothing\)

 

2 tháng 6 2017

\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\Leftrightarrow\frac{a}{5}-\frac{2}{15}=\frac{2}{b}\Leftrightarrow\frac{3a-2}{15}=\frac{2}{b}\Leftrightarrow\left(3a-2\right)b=30\)

Ta có bảng sau: 

3a-212356101530
b30151065321
a14/35/37/38/3417/332/3

Vì a;b là các số tự nhiên nên có 2 cặp số a;b thỏa mãn là ...

4 tháng 3 2020

B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y

⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)

⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15

⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1

⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28