K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

\(\orbr{\begin{cases}a=b=0\\a=b=1\end{cases}}\)

nếu \(a=b=1\)thì \(a+b=2\)

nếu \(a=b=0\)thì\(a+b=0\)

15 tháng 1 2017

hình như sai rồi bạn

7 tháng 5 2015

Giả sử p là số nguyên tố. Từ a^2.b^2=p(a^2+b^2)=>a^2+b^2chia hết cho p hoặc achia hết cho p và b chia hết cho p (1)

=> a^2.b^2 chia hết cho p^2 => p(a^2+b^2)chia hết cho p2 =>a2+b2 chia hết cho p (2). Từ (1) và (2) =>a chia hết cho p và b chia hết cho p.

Từ a\(\ge\)p , b\(\ge\)p => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}=>\frac{1}{p}\le\frac{2}{p^2}=>p\le2\left(3\right)\)

Từ a> 2, b > 2 => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)

Từ (3), (4) => mâu thuẫn  => p là hợp số.

đúng mình cái

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

9 tháng 7 2019

#)Giải :

Đặt \(A=a^2+b^2+c^2\)

Do tích a.b chẵn nên ta xét các trường hợp :

TH1 : Trong a và b có 1 số chẵn và 1 số lẻ 

Giả sử a là số chẵn, còn b là số lẻ 2

=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1

=> a2 + b2 = 4m + 1 (m thuộc N)

Chon c = 2m => a2 + b+ c2 = 4m2 + 4m + 1 = (2m + 1)(thỏa mãn) (1)

TH2 : Cả a,b cùng chẵn 

=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)

Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)

Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài 

Do a, b là số chẵn nên ta xét 2 trường hợp:

TH1a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m+ 4m + 1 = (2m + 1)2 (ĐPCM)

TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)