Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
a) Giả sử ước của M là số chẵn thì \(M=2.k\Leftrightarrow a^2+3a+1=2k\)
Ta thấy \(a^2+3a+1=a\left(a+1\right)+2a+1\)
a(a + 1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2. Vậy thì a(a + 1) + 2a chia hết cho 2.
Vì 2k chia hết cho 2, a(a + 1) + 2a cũng chia hết cho 2 nên 1 chia hết 2 (vô lý)
Vậy nên mọi ước của M đều là số lẻ.
b) Đặt \(a=5u+v\left(u\in N;0\le v\le4\right)\)
Khi đó \(M=\left(5u+v\right)^2+3\left(5u+v\right)+1\)
\(=25u^2+10uv+v^2+15u+3v+1\)
\(=\left(25u^2+10uv+15u\right)+v^2+3v+1\)
Để M chia hết 5 thì \(v^2+3v+1⋮5\)
Với \(0\le v\le4\), ta thấy chỉ có v = 4 là thỏa mãn.
Vậy \(a=5u+4\left(u\in N\right)\)
c) Để M là lũy thừa của 5 thì \(a=5u+4\left(u\in N\right)\)
\(\Rightarrow M=\left(5u+4\right)^2+3\left(5u+4\right)+1\)
Với n chẵn, a có tận cùng là chữ số 4. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Với n lẻ, a có tận cùng là chữ số 9. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Vậy không tồn tại số a để M là lũy thừa của 5.
đây là đề thi tuyển sinh lớp 10 chuyên trường PTNK-ĐHQG-TP.Hồ Chí Minh(vòng 2) năm 2013-2014 ak
Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên
\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212
Ta lại có
\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)
\(=21\left(a+b\right)^2-\left(a-b\right)^2\)
Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21
Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)
Nên (a - b)2 chia hết cho 3 và 7
=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)
=> (a - b) chia hết cho 21
=> (a - b)2 chia hết cho 212
Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212
=> 21(a + b)2 chia hết cho 212
=> (a + b) chia hết cho 21
Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212
=> 5(a + b)2 chia hết cho 212
=> ab chia hết cho 212 = 441
Tham khảo:
https://diendantoanhoc.net/topic/110789-chứng-minh-nếu-p4-là-ước-của-a2b2-và-aab2-thì-p4-cũng-là-ước-của-aab/
cảm ơn bạn