K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2021

Vì ( a - b )\(\ge\)\(\forall\)a,b \(\Rightarrow a^2+b^2\ge2ab\). Mà ab = 4 \(\Rightarrow a^2+b^2\ge8\)

\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge\frac{\left(a+b-2\right).8}{a-b}\)

Đặt t = a + b \(\Rightarrow t\ge4\)( Do \(a+b\ge2\sqrt{ab}=4\))

\(\frac{\left(t-2\right).8}{t}=\frac{8t-16}{t}=8-\frac{16}{t}\)

Vì \(t\ge4\Rightarrow\frac{16}{t}\le\frac{16}{4}\Rightarrow-\frac{16}{t}\ge-4\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)

\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge4\)Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a,b=4\end{cases}\Leftrightarrow a=b=2}\)

Vậy \(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)min \(\Leftrightarrow a=b=2\)

Vì (a-b)2 \(\ge\)\(\forall\)a,b\(\Rightarrow\)a2+b2 \(\ge\)2ab. Mà ab=4\(\Rightarrow\)a2+b2 \(\ge\)8.

\(\Rightarrow\)P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)\(\ge\)\(\frac{\left(a+b-2\right).8}{a+b}\)

Đặt t=a+b\(\Rightarrow\)t\(\ge\)4 (Do a+b \(\ge\)2\(\sqrt{ab}\)= 4)

\(\Rightarrow\)P=\(\frac{\left(t-2\right).8}{t}\) = \(\frac{8t-16}{t}\)=\(8-\frac{16}{t}\) 

Vì t\(\ge\)\(\Rightarrow\)\(\frac{16}{t}\le\frac{16}{4}=4\)\(\Rightarrow-\frac{16}{t}\ge-4\)\(\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)

\(\Rightarrow P\ge4.\)Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\a.b=4\end{cases}\Leftrightarrow a=b=2}\)

Vậy P min = 4 \(\Leftrightarrow\)a=b=2.

NV
28 tháng 8 2021

\(2ab+a+b=2a^2+2b^2\ge2ab+\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)

\(F=\dfrac{a^4}{ab}+\dfrac{b^4}{ab}+2020\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2ab}+\dfrac{8080}{a+b}\ge a^2+b^2+\dfrac{8080}{a+b}\)

\(F\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{8080}{a+b}=\dfrac{\left(a+b\right)^2}{2}+\dfrac{4}{a+b}+\dfrac{4}{a+b}+\dfrac{8072}{a+b}\)

\(F\ge3\sqrt[3]{\dfrac{16\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{8072}{2}=...\)

Từ giả thiết \(1\le a\le2\) =>  ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)

Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)

Vì vậy ta có P:

\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức

6 tháng 4 2020

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

7 tháng 4 2020

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right)  \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...