K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Áp dụng BĐT Cô-si,ta có :

\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)

Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)

Cộng vế theo vế, ta được :

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)

Dấu "=" xảy ra khi a = b = 1

1 tháng 5 2020

=3a+2b bằng số thỏa mãn

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)[3a(a+2b)+3b(b+2a)]\)

\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+12ab)\)

Theo BĐT Cô-si: \(a^2+b^2\geq 2ab\Rightarrow 12ab\leq 6(a^2+b^2)\)

Do đó:

\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+6a^2+6b^2)=9(a^2+b^2)^2\)

\(a^2+b^2\leq 2\)

\(\Rightarrow (a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq 9.2^2=36\)

\(\Rightarrow a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)}\leq \sqrt{36}=6\)

(đpcm)

Dấu bằng xảy ra khi $a=b=1$

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

26 tháng 10 2016

Áp dụng BĐT Cauchy ta có : \(2\ge a^2+b^2\ge2\sqrt{a^2b^2}=2ab\Rightarrow ab\le1\)

Áp dụng BĐT Bunhiacopxki : 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)^2\le\left(a^2+b^2\right)\left[3\left(a^2+b^2\right)+12ab\right]\)

\(\le2\left(3.2+12.1\right)=36\)

\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)

Dấu "=" xảy ra khi a = b = 1

12 tháng 2 2019

ÁP DỤNG BĐT CÔ SI ,TA CÓ:

\(\sqrt{3a\left(a+2b\right)}\le\frac{3a+\left(a+2b\right)}{2}=2a+b\)\(\Leftrightarrow a\sqrt{3a\left(a+2b\right)}\le a\left(2a+b\right)=2a^2+ab\left(1\right)\) 

(VÌ a,b khong âm). C/M TƯƠNG TỰ TA CÓ \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\left(2\right)\) 

TA CÓ  :\(2ab\le a^2+b^2\le2\left(3\right)\).TỪ (1),(2),(3)  TA CÓ;

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2b^2+ab+ab\le\)\(2\left(a^2+b^2\right)+2ab\le4+2=6\) 

DẤU ĐẲNG THỨC XẢY RA KHI a=b=1

ta có:

\(\left(b-c\right)^2\ge0\Leftrightarrow b^2+4bc+4c^2\le3b^2+6c^2\Leftrightarrow\left(b+2c\right)^2\le3b^2+6c^2\)

\(\Leftrightarrow\frac{\left(b+2c\right)^2}{3b^2+6c^2}\le1\Leftrightarrow\frac{b+2c}{\sqrt{3b^2+6c^2}}\le1\Leftrightarrow\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}\le a\)

cmtt =>\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c

29 tháng 9 2018

Trả lời:

a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)

Ta có: a + b\(\ge\)\(2\sqrt{ab}\)

b+c\(\ge\)\(2\sqrt{bc}\)

c+a\(\ge\)\(2\sqrt{ca}\)

\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)

b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)

Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b

\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab

CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab

\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab

= 2(a2+b2)+2ab =6(đpcm)

c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a

Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)

\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)

\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)

Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc

\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc

\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)

Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc

\(\Leftrightarrow\) 1 \(\ge\) 8abc

\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)

Từ (1),(3) kết hợp với (2)

\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)

2 tháng 10 2019

\(\sqrt{3b\left(a+2b\right)}\le\frac{3b+\left(a+2b\right)}{2}\)\(\sqrt{3a\left(b+2a\right)}\le\frac{3a+\left(b+2a\right)}{2}\)

=> M\(\le a\frac{a+5b}{2}+b\frac{5a+b}{2}\)=\(\frac{a^2+b^2+10ab}{2}\)\(\le\frac{6\left(a^2+b^2\right)}{2}\)( áp dụng 2ab\(\le a^2+b^2\))=3(a2+b2)\(\le\)6

dấu = khi a =b =1

21 tháng 4 2017

Ta có: \(\hept{\begin{cases}a^2+b^2+1=2\left(a+b\right)\\c^2+d^2+36=12\left(c+d\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2+\left(b-1\right)^2=1\\\left(c-6\right)^2+\left(d-6\right)^2=36\end{cases}}\)

\(\Rightarrow\) Đường tròn tâm \(\hept{\begin{cases}I\left(1;1\right)\\R=1\end{cases}}\), đương tròn tâm \(\hept{\begin{cases}I'\left(6;6\right)\\R'=6\end{cases}}\)

Gọi \(\hept{\begin{cases}A\left(a;b\right)\in\left(I\right)\\B\left(c;d\right)\in\left(I'\right)\end{cases}}\)

\(\Rightarrow AB=\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)

Vì \(II'=\sqrt{25+25}=5\sqrt{2}>6+1=7=R+R'\)

Kẽ II' cắt đường tròn (I) và (I') tại M, N, P, Q.

Ta có: \(NP\le AB\le MQ\)

\(\Leftrightarrow II'-\left(R+R'\right)\le AB\le II'+\left(R+R'\right)\)

\(\Leftrightarrow5\sqrt{2}-7\le AB\le5\sqrt{2}+7\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)^3\le AB\le\left(\sqrt{2}+1\right)^3\)

\(\Rightarrow\left(\sqrt{2}-1\right)^6\le\left(a-c\right)^2+\left(b-d\right)^2\le\left(\sqrt{2}+1\right)^6\)