Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m=(2k+1)2;n=(2k+3)2m=(2k+1)2;n=(2k+3)2 (k thuộc N)
⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)
Do k;k+1;k+2k;k+1;k+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
⇒16k(k+2)(k+1)2⋮3⇒16k(k+2)(k+1)2⋮3
+ k chẵn ⇒k(k+2)⋮4⇒k(k+2)⋮4
+k lẻ ⇒(k+1)2⋮4⇒(k+1)2⋮4
⇒16k(k+2)(k+1)2⋮64⇒16k(k+2)(k+1)2⋮64
mn−m−n+1⋮192
mn - m - n + 1
= m[n - 1] - [n - 1]
= [n - 1][m - 1]
Vì m,n là hai số cp lẻ liên tiếp, ta có:
m = [2x-1]2 = 4x2 - 4x + 1
n = [2x+1]2 = 4x2 + 4x + 1
=> [m-1][n-1] = 4x[x - 1].4x[x+1]
= [x-1]x[x+1].4.4.x
= x[x - 1]. x[x+1].4.4
Vì [x-1]x[x+1] là tích ba số liên tiếp nên chia hết cho 3
=> [n-1][m-1] chia hết cho 3
Lại có:
x[x - 1] và x[x+1] chia hết cho 2 [là tích hai số liên tiếp]
=> [m-1][n-1] chia hết cho 4*2*4*2 = 64 [hai thừa số 4 và hai thừa số chia hết cho 2]
Mà 3,64 nguyên tố cùng nhau
=> [m-1][n-1] chia hết cho 3.64 = 192
Vậy mn-m-n + 1 chia hết cho 192 khi mn, là 2 số cp lẻ liên tiếp
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1
cho b=a+1
\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)
\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)
\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)
vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)
Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k! ^_^ *_*
Gọi 3 số lần lượt là : (x - 1) ; x ; (x + 1)
Có :
(x - 1)3 + x3 + (x + 1)3
= (x3 - 3.x2.1 + 3.x.12 - 1) + x3 + (x3 + 3.x2.1 + 3x.12 + 1)
= x3 - 3.x2.1 + 3.x.12 - 1 + x3 + x3 + 3.x2.1 + 3x.12 + 1
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3x(x2 - 1) + 9x
= 3x.(x - 1)(x + 1) + 9x
Xét (x - 1).x.(x + 1) là tích 3 số nguyên liên tiếp
=> (x - 1).x.(x + 1) \(⋮\) 3
=> 3.(x - 1).x.(x + 1) \(⋮\) 9
Mà 9x \(⋮\) 9
=> (x - 1)3 + x3 + (x + 1)3 \(⋮\) 9
Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2
Ta có:
k2+(k+1)2+k2.(k+1)2
=k2+k2+2k+1+k4+2k3+k2
=k4+2k3+3k2+2k+1
=(k2+k+1)2
=[k(k+1)+1]2 là số chính phương lẻ.
Ta có: \(ab-a-b+1=\left(ab-a\right)-\left(b-1\right)=a\left(b-1\right)-\left(b-1\right)=\left(a-1\right)\left(b-1\right)\)
Mà a,b là hai số chính phương lẻ liên tiếp
\(\Rightarrow\hept{\begin{cases}a=\left(2k-1\right)^2\\b=\left(2k+1\right)^2\end{cases}}\)
Đặt \(A=\left(a-1\right)\left(b-1\right)=\left[\left(2k-1\right)^2-1\right]\left[\left(2k+1\right)^2-1\right]\)
\(=\left(4k^2-4k\right)\left(4k^2+4k\right)\)
\(=16k^4-16k^2\)
\(=16k^2\left(k^2-1\right)\)
\(=16k\left(k-1\right)k\left(k+1\right)\)
Ta có: \(A⋮16\Rightarrow A⋮4\)
Mà \(\left(k-1\right)k\left(k+1\right)\)là tích 3 số tự nhiên liên tiếp
\(\Rightarrow A⋮3\)
\(\Rightarrow A⋮192\left(48=16.4.3\right)\)