K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

ab gồm a : 5 dư 1 và b : 5 dư 2

Vậy b có thể là số 2,7

a có thể là số 1,6

Vậy các số có thể là : 17,12,62,67

Các số này đều chia 5 dư 2, vậy số ab có a chia 5 dư 1, b chia 5 dư 2 chia 5 dư 2

6 tháng 7 2016

Khẳng định a.b chia 5 dư 2 là đúng

13 tháng 12 2022

a=5k+3

b=5c+2

ab=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

30 tháng 6 2015

Dễ mà . Em học lớp 6 cũng làm được.

Giả sử a=(c+3) ; b =(d+2)  (c ;d chia hết cho 5)

a.b=(c+3) . (d+2)

a.b=(c+3) . d + (c+3) .2

a.b=c.d+3.d+2.c+6

vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1

 

29 tháng 6 2015

Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !

11 tháng 6 2015

Đặt a=5x+2

b=5y+3

a.b=(5x+2)(5y+3)=25xy+15x+10y + 6=5(5xy+3x+2y+1)+1

Do 5(5xy+3x+2y+1) chia hết cho 5

=>5(5xy+3x+2y+1)+1 chia 5 dư 1

Vậy a . b chia 5 dư 1 với a:5 dư 2 và b:5 dư 3

25 tháng 2 2017

Ta có: a = 5 x p + 2 (p ∈ N )
Tương tự ta có: b = 5 x q + 3 (q ∈ N )
Theo bài ra ta có: a x b = (5 x p + 2) x (5 x q + 3)
Hay: a x b = 25 x p x q + 10 x q + 15 x p + 6 = 5 x (5 x p x q + 2 x q + 3 x p) + 6
Vì: 5 x (5 x p x q + 2 x q + 3 x p) chia hết cho 5; còn 6 chia cho 5 dư 1
Suy ra: a x b chia cho 5 có số dư là 1

22 tháng 8 2017

Theo đề: a : 5 dư 2 =>a+3 : hết cho 5

              b : 5 dư 3 =>b+2 : hết cho 5

=>ab+2*3=ab+6

mà ab:hết cho 5

6:5 dư 1

=>ab:5 dư 1

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.100
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.101
4A=98.99.100.101
4A=97990200
A=979902004979902004
A=24497550
24 tháng 7 2017

Vì a chia cho 3 dư 1 => a có dạng a=3k+1 (\(k\in N\))

b chia cho 3 dư 2 => b có dạng b=3h+2 (\(h\in N\))

Do đó, ta có: \(ab=\left(3k+1\right)\left(3h+2\right)=9hk+6k+3h+2=3\left(3hk+2k+h\right)+2\)

\(3\left(3hk+2k+h\right)⋮3\); 2 chia 3 dư 2

\(\Rightarrow3\left(3hk+2k+h\right)+2\) chia 3 dư 2 hay ab chia 3 dư 2

Vậy ab chia 3 dư 2

11 tháng 12 2017

5, a,

Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1 

=> a+b = a1.6+b1.6 = 6(a1+b1) = 72

=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)

Vì (a1,b1) = 1

=> a1+b1 = 1+11=5+7

* Với a1+b1 = 1+11

+) TH1: a1 = 1; b1=11 => a =6 và b = 66

+) TH2: a1=11; b1=1 => a=66 và b = 6

* Với a1+b= 5+7

+)TH1: a1=5 ; b1=7 => a=30 và b=42

+)TH2: a1=7;b1=5 => a=42 và b=30

Vậy.......

11 tháng 12 2017

1, a=ƯCLN(128;48;192)

2, b= ƯCLN(300;276;252)

3, Gọi n.k+11=311  => n.k = 300

         n.x + 13 = 289  => n.x = 276

=> \(n\inƯC\left(300;276\right)\)

4, G/s (2n+1;6n+5) = d  (d tự nhiên)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow6n+5-\left(6n+3\right)⋮d}\)

\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì 2n+1 lẻ => 2n+1 không chia hết cho 2

=> d khác 2 => d=1 => đpcm

7 tháng 9 2016

a. Biến đổi được: (x - 3)2 = 144 = 122 = (-12)2 ↔ x - 3 = 12 hoặc x - 3 = -12 ↔ x = 15 hoặc x = -9

Vì x là số tự nhiên nên x = -9 (loại). Vậy x = 15

b. Do  chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = 

Vì A =  chia cho 9 dư 1 →  - 1 chia hết cho 9 → 

↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6

Vậy x = 6; y = 1

c. Xét số nguyên tố p khi chia cho 3.Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3

Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3

Vậy p2 - 1 chia hết cho 3.