Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
s= 3+32+33+ ...+ 32016
= ( 3+32+33) + .....+( 32014+ 32015+32016)
= 3( 1+3+32)+.....+ 32014.( 1+3+32)
= (3+....+32014)(1+3+32)
= (3+....+32014)13 chia hết cho 13
câu còn lại nhốm 4 số nha
vì 3a+2b chia hết cho 17 nên (3a+2b)10 chia hết cho 17
ta có 10( 3a+2b) - 3( 10a+b) = 30a + 20b-30a-3b=17b chia hết cho 17
=> 3( 10a+b) chia hết cho 17
=> 10a+b chia hết cho 17
a)12a + 36b = 2(6a + 18b) chia hết cho 2
3211 không chia hết cho 2
=> không tìm được a,b thỏa mãn đề.
b)Đặt A=2a+7b
B=4a+2b
xét hiệu:2A-B=2.(2a+7b)-(4a+2b)
=4a+14b-4a-2b
=12b
Vì A ⋮3 nên 2a⋮3;12b⋮3
⇒B⋮3 hay 4a+2b ⋮3(đpcm)
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5
mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)
b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn
(a,b).[a,b]=a.b=d.d.6
a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1
Ta có : (a + b + c) \(⋮\)2
=> \(\left(a+b+c\right)^2⋮2\)
=> \(\left(a+b+c\right)\left(a+b+c\right)⋮2\)
=> \(\left(a+b+c\right).a+\left(a+b+c\right).b+\left(a+b+c\right).c\)
=> \(a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)⋮2\)
Vì \(2\left(ab+bc+ca\right)⋮2\)
=> \(a^2+b^2+c^2⋮2\left(\text{đpcm}\right)\)
Bài làm:
Ta có: Vì a+b+c chia hết cho 2
=> a+b+c chẵn
Nên ta xét các TH sau:
+Nếu: Cả 3 số a,b,c đều chẵn
=> a2,b2,c2 đều chẵn
=> a2+b2+c2 chia hết cho 2
+Nếu: Chỉ có 1 số trong 3 số a,b,c chẵn
G/s a là số chẵn, b và c là 2 số lẻ
=> a2 chẵn và b2,c2 lẻ
=> a2+b2+c2 chẵn
=> đpcm