a+b≤1a+b≤1. Tìm GTNN của A=1a2+b2+20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

Em gõ Latex nha mn nhìn ko ra nha em

18 tháng 1 2022

a+b≤1. tìm gtnn của :1/(a^2+b^2)+(2012ab+1)/ab+4ab

\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)

Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

Áp dụng bđt Cauchy ta có

\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)

=> \(Q\ge2012+7=2019\)

Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)

Vậy......

20 tháng 4 2019

\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)

\(\Rightarrow Q\ge4+2+1+2012=2019\)

Dấu "=" xảy ra khi a=b=1/2

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

4 tháng 10 2020

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

8 tháng 11 2017

Có : (a-b)^2>=0

<=>a^2+b^2>=2ab       (2)

<=>a^2+b^2+2ab>=4ab

<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2    (3)

Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b     (4)

Áp dụng bđt (2) ; (3) và (4)  thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab

>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)\(\frac{1}{\left(a+b\right)^2}\)

= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM 

Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2

2 tháng 1 2019

Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)}{1+b^2}-\frac{ab^2}{1+b^2}\)

                                                               \(=a-\frac{ab^2}{1+b^2}\)

Áp dụng bđt Cô-si ta có: \(1+b^2\ge2\sqrt{b^2}=2b\)

\(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

\(\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

\(\Rightarrow\frac{a}{1+b^2}\ge a-\frac{ab}{2}\)

C/m tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)

                     \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng từng vế của 3 bđt trên lại ta đc

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Ta có bđt: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)(1) với x , y , z dương 

Thật vậy \(\left(1\right)\Leftrightarrow\left(x+y+z\right)^2\ge3xy+3yz+3zx\)

                      \(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)

                      \(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)

                    \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

                    \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(Luôn đúng)

Áp dụng bđt (1) ta đc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Khi đó: \(VT\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" <=> a = b = c = 1

Vậy .............

13 tháng 2 2019

Chứng minh BĐT Cauchy-schwarz:

Xem câu hỏi

Áp dụng BĐT Cauchy-schwarz ta có:

\(P=a^2+2b^2+3c^2=a^2+\frac{b^2}{\frac{1}{2}}+\frac{c^2}{\frac{1}{3}}\ge\frac{\left(a+b+c\right)^2}{1+\frac{1}{2}+\frac{1}{3}}=\frac{1}{\frac{11}{6}}=\frac{6}{11}\)

Dấu " = " xảy ra \(\Leftrightarrow a=2b=3c\)

\(\Leftrightarrow b=\frac{3}{2}c\)

Có: \(a+b+c=1\)

\(\Leftrightarrow3c+\frac{3}{2}c+c=1\)

\(\Leftrightarrow\frac{11}{2}c=1\Leftrightarrow c=\frac{2}{11}\)

\(\Leftrightarrow\hept{\begin{cases}a=3c=\frac{6}{11}\\b=\frac{3}{2}c=\frac{3}{11}\end{cases}}\)

Vậy \(P_{min}=\frac{6}{11}\Leftrightarrow\hept{\begin{cases}a=\frac{6}{11}\\b=\frac{3}{11}\\c=\frac{2}{11}\end{cases}}\)

14 tháng 2 2019

Thử cách này có phải ý bạn không:

\(P=\left(a^2+\frac{36}{121}\right)+\left(2b^2+\frac{18}{121}\right)+\left(3c^2+\frac{12}{121}\right)-\frac{6}{11}\)

\(\ge2\sqrt{a^2.\frac{36}{121}}+2\sqrt{2b^2.\frac{18}{121}}+2\sqrt{3c^2.\frac{12}{121}}-\frac{6}{11}\)

\(=\frac{12\left(a+b+c\right)}{11}-\frac{6}{11}=\frac{12}{11}-\frac{6}{11}=\frac{6}{11}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=\frac{36}{121}\\2b^2=\frac{18}{121}\\3c^2=\frac{12}{121}\end{cases}}\) và a,b,c > 0 tức là \(\hept{\begin{cases}a=\frac{6}{11}\\b=\frac{3}{11}\\c=\frac{2}{11}\end{cases}}\) (t/m)

Vậy \(P_{min}=\frac{6}{11}\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{6}{11}\\b=\frac{3}{11}\\c=\frac{2}{11}\end{cases}}\)