K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

Lượn lờ trên Hỏi Bài mà khó thế má

27 tháng 5 2021

sai đề mng ạ :> lỗi của mình a^3 +b^3 +11 ạ trên tử ấy

16 tháng 6 2020

đặt \(t=a+b\) từ GT => \(3=t^2-ab\ge\frac{3}{4}t^2\)\(\Leftrightarrow\)\(-2\le t\le2\)

\(P=-4t^3-3t^2+18t+9=\hept{\begin{cases}\frac{-1}{4}\left(2t+3\right)^2\left(4t-9\right)-\frac{45}{4}\ge\frac{-45}{4}\left(dungvoit\le2\right)\\-\left(t-1\right)^2\left(4t+11\right)+20\le20\left(dungvoit\ge-2\right)\end{cases}}\)

\(P_{min}=\frac{-45}{4}\) tại 

\(\hept{\begin{cases}a^2+b^2+ab=3\\a+b=\frac{-3}{2}\end{cases}}\Leftrightarrow\left(a;b\right)=\left\{\left(\frac{-3-\sqrt{21}}{4};\frac{-3+\sqrt{21}}{4}\right);\left(\frac{-3+\sqrt{21}}{4};\frac{-3-\sqrt{21}}{4}\right)\right\}\)

\(P_{max}=20\) tại \(\hept{\begin{cases}a^2+b^2+ab=3\\a+b=1\end{cases}}\Leftrightarrow\left(a;b\right)=\left\{\left(2;-1\right);\left(-1;2\right)\right\}\)

2 tháng 2 2020

Có: \(4=\left(a+b\right)^2-\left(b-1\right)^2\le\left(a+b\right)^2\)\(\Rightarrow\)\(a+b\ge2\)

\(P=\frac{\frac{a^4}{a}+\frac{b^4}{b}}{ab}\ge\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab}\ge\frac{\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{a+b}}{ab}=\frac{\left(a+b\right)\left(a+b\right)^2}{4ab}\ge\frac{2\left(2\sqrt{ab}\right)^2}{4ab}=2\)

"=" \(\Leftrightarrow\)\(a=b=1\)

13 tháng 6 2019

Em mới tìm được Min thôi ạ, Max =\(2\sqrt{2}+4\)nhưng chưa biết cách giải , mọi người giúp với ạ

áp dụng bất đẳng thức AM-GM cho 3 số ta có:

\(a^3+b^3+1\ge3\sqrt[3]{a^3b^3.1}=3ab\)

\(\Rightarrow M=\frac{a^3+b^3+4}{ab+1}=\frac{\left(a^3+b^3+1\right)+3}{ab+1}\ge\frac{3ab+3}{ab+1}=3\)

Vậy giá trị nhỏ nhất của M=3 khi \(\hept{\begin{cases}a^2+b^2=2\\a^3=b^3=1\end{cases}\Rightarrow}a=b=1\)

13 tháng 6 2019

\(0\le a\le\sqrt{2}\Rightarrow a\left(a-\sqrt{2}\right)\le0\Rightarrow a^2\le a\sqrt{2}\Rightarrow a^3\le a^2\sqrt{2}\)

Tương tự và cộng lại: \(a^3+b^3\le\sqrt{2}\left(a^2+b^2\right)=2\sqrt{2}\)

\(\Rightarrow M\le\frac{2\sqrt{2}+4}{ab+1}\le\frac{2\sqrt{2}+4}{1}=2\sqrt{2}+4\) (do \(ab\ge0\Rightarrow ab+1\ge1\))

Dấu "=" khi \(\left(a;b\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)