K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

Ta có : \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}=4\)

\(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}=2\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{a^2+b^2}\ge4+2=6\)

16 tháng 12 2018

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)

\(\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+\frac{4}{\left(a+b\right)^2}=\frac{2}{1}+\frac{4}{1}=6\)

23 tháng 3 2019

\(VT=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{2ab}=4+\frac{1}{2ab}\)

Ta có: \(\frac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\frac{\left(a+b\right)^2}{2}\ge2ab\) (BĐT AM-GM or CÔ si gì đó)

\(VT\ge4+\frac{1}{\frac{\left(a+b\right)^2}{2}}=4+2=6^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a+b=1\end{cases}}\Leftrightarrow}\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)

14 tháng 11 2017

Ta có : \(a+b+c=3.\)

\(\Rightarrow\hept{\begin{cases}b+c=3-a\\a+c=3-b\\a+b=3-c\end{cases}}\)

Thay vào ta có : \(\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)

................................

Tự làm tiếp nha 

5 tháng 4 2017

a) đề thiếu òi bạn à            

24 tháng 4 2018

Đặt \(C=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)

\(C=\dfrac{1}{2ab}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\)

Ta có:\(2ab\le\dfrac{\left(a+b\right)^2}{2}\)(tự cm)

\(\Rightarrow\dfrac{1}{2ab}\ge\dfrac{1}{\dfrac{1}{2}}=2\)

Lại có:\(\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)(tự cm)

\(\Rightarrow C\ge2+4=6\left(đpcm\right)\)