Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét bđt sau :\(\left(a+b^3\right)\left(m+n\right)\ge\left(\sqrt{am}+\sqrt{b^3n}\right)^2\)(đúng theo bunhia nhé)
Chon \(m=a;n=\frac{1}{b}\)khi đó :
\(\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(\sqrt{a.a}+\sqrt{b^3.\frac{1}{b}}\right)^2\)
\(< =>\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2\)
\(< =>a+b^3\ge\frac{\left(a+b\right)^2}{\frac{1}{a}+b}=\frac{a\left(a+b\right)^2}{1+ab}\)
Suy ra \(\frac{1}{a+b^3}\le\frac{1+ab}{a\left(a+b\right)^2}\)(*)
Bằng cách chứng minh tương tự ta được :\(\frac{1}{a^3+b}\le\frac{1+ab}{b\left(a+b\right)^2}\)(**)
Từ (*) và (**) suy ra : \(\frac{1}{a+b^3}+\frac{1}{a^3+b}\le\frac{1+ab}{a\left(a+b\right)^2}+\frac{1+ab}{b\left(a+b\right)^2}\)
\(=\frac{1}{\left(a+b\right)^2}\left(\frac{1+ab}{a}+\frac{1+ab}{b}\right)=\frac{1}{\left(a+b\right)^2}\left(\frac{1}{a}+a+\frac{1}{b}+b\right)\)
\(=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{\left(a+b\right)^2}=\frac{\frac{1}{a}+\frac{1}{b}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{\frac{a+b}{ab}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\)
Khi đó bài toán trở thành tìm GTLN của biểu thức :
\(A\le S=\left(a+b\right)\left(\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\right)-\frac{1}{ab}=\frac{a+b}{ab\left(a+b\right)}+\frac{a+b}{a+b}-\frac{1}{ab}\)
\(=\frac{1}{ab}+1-\frac{1}{ab}=1\)
Vậy \(A_{max}=1\)đạt được khi ...
chuyên KHTN 2017 ?
Áp dụng BĐT Bunyakovsky:
\(\left(a+b^3\right)\left(a+\dfrac{1}{b}\right)\ge\left(a+b\right)^2\);\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\)
\(\Rightarrow VT\le\left(a+b\right)\left[\dfrac{a+\dfrac{1}{b}}{\left(a+b\right)^2}+\dfrac{b+\dfrac{1}{a}}{\left(a+b\right)^2}\right]-\dfrac{1}{ab}\)
\(=\dfrac{a+b+\dfrac{1}{a}+\dfrac{1}{b}}{a+b}-\dfrac{1}{ab}=1\)
Dấu = xảy ra khi a=b=1
Ta có: \(2(1-\text{A})=2\Big[1- \left( a+b \right) \left(\frac{1}{a+b^3}+ \frac{1}{a^3+b}\right) +{\frac {1}{ab}}\Big] \)
\(={\frac { \left( {a}^{2}+{b}^{2} \right) \left( a-b \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) ab}}+{\frac {{a}^{ 3} \left( b+1 \right) ^{2} \left( b-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) b}}+{\frac {{b}^{3} \left( a+1 \right) ^{2} \left( a-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) a}}+\,{\frac {2 \left( ab-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) }}\geq 0\)
Đẳng thức xảy ra khi $a=b.$
Bài toán chỉ có thế
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
\(P=\frac{\frac{a^2+b^2+ab}{ab}.\frac{a^2-2ab+b^2}{a^2b^2}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{\frac{a^4-2a^3b+a^2b^2+a^2b^2-2ab^3+b^4+a^3b-2a^2b^2+ab^3}{a^3b^3}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{a^4+b^4-a^3b-ab^3}{a^3b^3}:\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{1}{ab}\)
\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)
Bạn làm tương tự nha
\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)
Áp dụng BĐT Bunhiacopski ta có:
\(\left(a^3+b\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2;\left(b^3+a\right)\left(\frac{1}{b}+a\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\frac{a+b}{a^3+b}\le\frac{\frac{1}{a}+b}{a+b};\frac{a+b}{b^3+a}\le\frac{\frac{1}{b}+a}{a+b}\)
\(\Leftrightarrow M\le\frac{\frac{1}{a}+b}{a+b}+\frac{\frac{1}{b}+a}{a+b}-\frac{1}{ab}=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{a+b}-\frac{1}{ab}\)
\(=\frac{ab\left(a+b\right)+a+b-\left(a+b\right)}{ab\left(a+b\right)}=1\)
Dấu "=" xảy ra tại a=b=1