Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://tranvantoancv.violet.vn/present/show/entry_id/10776977
Với x,y,z >0, ta có:
-\(\frac{x}{y}+\frac{y}{x}\ge2\) (1)
-\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) (2)
-\(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\frac{x^2+y^2+z^2}{xy+yz+zx}\ge1\)(3)
Xảy ra đẳng thức ở (1),(2),(3) \(\Leftrightarrow x=y=z\), ta có:
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2.\frac{a+b+c}{abc}\)
=\(\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2+2ab+2bc+2ca\right).\frac{\left(a+b+c\right)}{abc}\)
Áp dụng các bất đẳng thức (1),(2),(3). ta có:
\(P\)\(\ge\)\(\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2\right).\frac{9}{ab+bc+ca}+2.9\)
=\(\left(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\right)+8.\frac{a^2+b^2+c^2}{ab+bc+ca}+18\)\(\ge2+8+18=28\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=ab+bc+ca\\ab=bc=ca\end{cases}\Leftrightarrow a=b=c}\)
đặt biểu thức là P
2P+1 =\(\frac{2ab+2bc+2ca}{a^2+b^2+c^2}+1+\frac{2\left(a+b+c\right)^3}{abc}=\)\(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^3}{abc}\)
\(\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\right).\)(1)
Áp dụng bdt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)dấu '=' khi x=y=z
(1) \(\ge\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{18}{ab+bc+ca}\right)\)(2)
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}.\)
=> (2)\(\ge\left(a+b+c\right)^2\left(\frac{9}{\left(a+b+c\right)^2}+\frac{16}{ab+bc+ca}\right)=\)\(9+\frac{16\left(a+b+c\right)^2}{ab+bc+ca}\ge9+16.3=57\)
vì a2+b2+c2\(\ge ab+bc+ca< =>a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
<=> (a+b+c)2\(\ge\)3(ab+bc+ca)
vậy 2P+1\(\ge57< =>P\ge28\)
dấu '=' khi a=b=c
Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Dự đoán điểm rơi sẽ có 1 số bằng 0.
Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)
do đó \(ab+bc+ca\ge ab\) và \(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)
BDT cần chứng minh tương đương
\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)
BĐT trên hiển nhiên đúng theo AM-GM.
Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
Áp dụng BĐT Cauchy
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)\ge9abc\)
\(\Rightarrow\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}\ge3\)
\(\Rightarrow P\ge3+\dfrac{4bc}{\left(b+c\right)^2}\)
Ta cần tìm Min của \(3+\dfrac{4bc}{\left(b+c\right)^2}\)
Không mất tính tổng quát giả sử \(b\ge c\)
\(\Rightarrow b+c\le2b\)\(\Leftrightarrow\left(b+c\right)^2\le4b^2\Leftrightarrow\dfrac{4bc}{\left(b+c\right)^2}\ge\dfrac{c}{b}\)
\(b\ge c\Rightarrow\dfrac{c}{b}\ge1\)
Vậy \(3+\dfrac{4bc}{\left(b+c\right)^2}\ge4\)
Dấu đẳng thức xảy ra khi a = b = c
Áp dụng BĐT bunyakovsky và AM -GM ta có:
\(\sqrt{\dfrac{\left[a+\left(b+c\right)\right]\left[bc+a\left(b+c\right)\right]}{abc}}\ge\sqrt{\dfrac{a\left(\sqrt{bc}+b+c\right)^2}{abc}}=\dfrac{\sqrt{bc}+b+c}{\sqrt{bc}}=1+\dfrac{b+c}{\sqrt{bc}}\)
\(LHS\ge1+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{4bc}{\left(b+c\right)^2}\ge1+3\sqrt[3]{\dfrac{4bc\left(b+c\right)^2}{4bc\left(b+c\right)^2}}=4\)
Dấu = xảy ra khi a=b=c
Em nhớ mình đã làm bài này rồi mà sao nó ko hiển thì nhỉ:) Lười gõ lại nên copy bên AoPS luôn!
Equality holds when a = b = c
Link gốc: Inequality 99 (câu trả lời của SBM)
SMB = tth đấy:)) Ko phải ai khác đâu:)